Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A bundle-filter method for nonsmooth convex constrained optimization

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

For solving nonsmooth convex constrained optimization problems, we propose an algorithm which combines the ideas of the proximal bundle methods with the filter strategy for evaluating candidate points. The resulting algorithm inherits some attractive features from both approaches. On the one hand, it allows effective control of the size of quadratic programming subproblems via the compression and aggregation techniques of proximal bundle methods. On the other hand, the filter criterion for accepting a candidate point as the new iterate is sometimes easier to satisfy than the usual descent condition in bundle methods. Some encouraging preliminary computational results are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslender A. (1987). Numerical methods for nondifferentiable convex optimization. Math. Program. Study 30: 102–126

    MathSciNet  MATH  Google Scholar 

  2. Auslender A. (1997). How to deal with the unbounded in optimization: theory and algorithms. Math. Program. 79: 3–18

    MathSciNet  Google Scholar 

  3. Bonnans J.F., Gilbert J.-Ch., Lemaréchal C. and Sagastizábal C. (2003). Numerical Optimization. Theoretical and Practical Aspects. Universitext. Springer, Berlin

    Google Scholar 

  4. Fletcher R., Gould N., Leyffer S., Toint P. and Wächter A. (2002). Global convergence of trust-region and SQP-filter algorithms for general nonlinear programming. SIAM J. Optim. 13: 635–659

    Article  MathSciNet  MATH  Google Scholar 

  5. Fletcher, R., Leyffer, S.: A bundle filter method for nonsmooth nonlinear optimization. Numerical Analysis Report NA/195. Department of Mathematics, The University of Dundee, Scotland (1999)

  6. Fletcher R. and Leyffer S. (2002). Nonlinear programming without a penalty function. Math. Program 91: 239–269

    Article  MathSciNet  MATH  Google Scholar 

  7. Fletcher R., Leyffer S. and Toint P.L. (2002). On the global convergence of a filter-SQP algorithm. SIAM J. Optim. 13: 44–59

    Article  MathSciNet  MATH  Google Scholar 

  8. Frangioni A. (1996). Solving semidefinite quadratic problems within nonsmooth optimization algorithms. Comput. Oper. Res. 23: 1099–1118

    Article  MathSciNet  MATH  Google Scholar 

  9. Frangioni A. (2002). Generalized bundle methods. SIAM J. Optim. 13: 117–156

    Article  MathSciNet  MATH  Google Scholar 

  10. Gonzaga C.C., Karas E.W. and Vanti M. (2003). A globally convergent filter method for nonlinear programming. SIAM J. Optim. 14: 646–669

    Article  MathSciNet  MATH  Google Scholar 

  11. Hiriart-Urruty J.-B. and Lemaréchal C. (1993). Convex Analysis and Minimization Algorithms. Number 305–306 in Grund. der Math. Wiss. Springer, Heidelberg

    Google Scholar 

  12. Hock W. and Schittkowski K. (1981). Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, vol. 187. Springer, Berlin

    Google Scholar 

  13. Kiwiel K.C. (1985). Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics, vol. 1133. Springer, Berlin

    Google Scholar 

  14. Kiwiel K.C. (1985). An exact penalty function algorithm for nonsmooth convex constrained minimization problems. IMA J. Numer. Anal. 5: 111–119

    Article  MathSciNet  MATH  Google Scholar 

  15. Kiwiel K.C. (1986). A method for solving certain quadratic programming problems arising in nonsmooth optimization. IMA J. Numer. Anal. 6: 137–152

    Article  MathSciNet  MATH  Google Scholar 

  16. Kiwiel K.C. (1987). A constraint linearization method for nondifferentiable convex minimization. Numer. Math. 51: 395–414

    Article  MathSciNet  MATH  Google Scholar 

  17. Kiwiel K.C. (1991). Exact penalty functions in proximal bundle methods for constrained convex nondifferentiable minimization. Math. Program. 52: 285–302

    Article  MathSciNet  MATH  Google Scholar 

  18. Lemaréchal C., Nemirovskii A. and Nesterov Yu. (1995). New variants of bundle methods. Math. Program. 69: 111–148

    Article  Google Scholar 

  19. Lemaréchal C. and Sagastizábal C. (1997). Variable metric bundle methods: from conceptual to implementable forms. Math Program 76: 393–410

    Article  Google Scholar 

  20. Lukšan L (1984). Dual method for solving a special problem of quadratic programming as a subproblem at linearly constrained nonlinear minimax approximation. Kybernetika 20: 445–457

    MathSciNet  MATH  Google Scholar 

  21. Lukšan, L., Vlček, J.: A bundle-Newton method for nonsmooth unconstrained minimization. Math. Program. 83(3, Ser. A):373–391 (1998)

  22. Lukšan L. and Vlček J. (1999). Globally convergent variable metric method for convex nonsmooth unconstrained minimization. J. Optim. Theory Appl. 102(3): 593–613

    Article  MathSciNet  MATH  Google Scholar 

  23. Lukšan, L., Vlček, J.: NDA: Algorithms for nondifferentiable optimization. Research Report V-797. Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2000)

  24. Lukšan L. and Vlček J. (2001). Algorithm 811, NDA, http://www.netlib.org/toms/811. ACM Trans. Math. Softw. 27(2): 193–213

    Article  MATH  Google Scholar 

  25. Mangasarian O.L. (1969). Nonlinear Programming. McGraw-Hill, New York

    MATH  Google Scholar 

  26. Mifflin R. (1977). An algorithm for constrained optimization with semismooth functions. Math. Oper. Res. 2: 191–207

    Article  MathSciNet  MATH  Google Scholar 

  27. Mifflin R. (1982). A modification and extension of Lemarechal’s algorithm for nonsmooth minimization. Math. Program. Study 17: 77–90

    MathSciNet  MATH  Google Scholar 

  28. Powell M.J.D. (1985). On the quadratic programming algorithm of Goldfarb and Idnani. Math. Program. Study 25: 46–61

    MathSciNet  MATH  Google Scholar 

  29. Rey P.A. and Sagastizábal C. (2002). Dynamical adjustment of the prox-parameter in variable metric bundle methods. Optimization 51: 423–447

    Article  MathSciNet  MATH  Google Scholar 

  30. Sagastizábal C. and Solodov M. (2005). An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or a filter. SIAM J. Optim. 16: 146–169

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Solodov.

Additional information

Dedicated to Alfred Auslender on the occasion of his 65th birthday.

This work has been supported by CNPq-PROSUL program. Claudia Sagastizábal was also supported by CNPq, by PRONEX–Optimization, and by FAPERJ. Mikhail Solodov was supported in part by CNPq Grants 300734/95-6 and 471780/2003-0, by PRONEX-Optimization, and by FAPERJ.

Claudia Sagastizábal is on leave from INRIA-Rocquencourt, BP 105, 78153 Le Chesnay, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karas, E., Ribeiro, A., Sagastizábal, C. et al. A bundle-filter method for nonsmooth convex constrained optimization. Math. Program. 116, 297–320 (2009). https://doi.org/10.1007/s10107-007-0123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0123-7

Keywords

Mathematics Subject Classification (2000)

Navigation