Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Perspective cuts for a class of convex 0–1 mixed integer programs

  • Published:
Mathematical Programming Submit manuscript

Abstract

We show that the convex envelope of the objective function of Mixed-Integer Programming problems with a specific structure is the perspective function of the continuous part of the objective function. Using a characterization of the subdifferential of the perspective function, we derive “perspective cuts”, a family of valid inequalities for the problem. Perspective cuts can be shown to belong to the general family of disjunctive cuts, but they do not require the solution of a potentially costly nonlinear programming problem to be separated. Using perspective cuts substantially improves the performance of Branch & Cut approaches for at least two models that, either “naturally” or after a proper reformulation, have the required structure: the Unit Commitment problem in electrical power production and the Mean-Variance problem in portfolio optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, S., Escudero, L.F., Guignard-Spielberg, M.: On modeling robust policies for financial trading. In: T.A. Ciriani and R.L. Leachman (eds.) Optimization in Industry 2, Wiley Chichester, 1994 pp 163–184

  2. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Mathematical Programming 58, 295–324 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borghetti, A., Frangioni, A., Lacalandra, F., Nucci, C.A.: Lagrangian heuristics based on disaggregated bundle methods for hydrothermal unit commitment. IEEE Transactions on Power Systems 18 (1), 1–10 (2003)

    Google Scholar 

  4. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Mathematical Programming 86, 595–614 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Duran, M.A., Grossmann, I.E: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Mathematical Programming 36, 307–339 (1986)

    MATH  MathSciNet  Google Scholar 

  6. Frangioni, A., Gentile, C.: Perspective cuts for 0–1 mixed integer programs. Technical report 577, Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” (IASI-CNR), 2002

  7. Frangioni, A.: Generalized bundle methods. SIAM Journal on Optimization 13 (1), 117–156 (2002)

    Article  MathSciNet  Google Scholar 

  8. Frangioni, A.: About lagrangian methods in integer optimization. Annals of Operations Research, To appear 2005

  9. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex analysis and minimization algorithms I–- fundamentals. Grundlehren Math. Wiss. 305 Springer-Verlag, New York 1993

  10. Jobst, N.J., Horniman, M.D., Lucas, C.A., Mitra, G.: Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints. Quantitative Finance 1, Wiley Chichester, 2001, pp 1–13

  11. Kallrath, J., Wilson, J.M.: Business optimization. Macmillan Press Ltd. Houndmills, 1997

  12. Markowitz, H.M.: Portfolio selection. Journal of Finance 7, 77–91 (1952)

    Article  Google Scholar 

  13. Padberg, M.W., Rinaldi, G.: A branch and cut algorithm for resolution of large scale symmetric salesman problems. SIAM Review 33, 60–100 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pardalos, P.M., Rodgers, G.P.: Computing aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45, 131–144 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rikun, A.D.: A convex envelope formula for multilinear functions. Journal of Global Optimimization 10, 425–437 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0-1 mixed convex programming. Mathematical Programming 86, 515–532 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tawarmalani, M., Sahinidis, N.V.: Convex extensions and envelopes of lower semi-continuous functions. Mathematical Programming 93, 515–532 (2002)

    Article  MathSciNet  Google Scholar 

  18. Zamora, J.M., Grossmann, I.E.: A global MINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits. Comput & Chem. Engin. 22, 367–384 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Frangioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frangioni, A., Gentile, C. Perspective cuts for a class of convex 0–1 mixed integer programs. Math. Program. 106, 225–236 (2006). https://doi.org/10.1007/s10107-005-0594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0594-3

Keywords

Navigation