Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Existence of Solutions for Noncoercive Hemivariational Inequalities by an Equilibrium Approach Under Pseudomonotone Perturbation

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the existence of a solution for a hemivariational inequality problem in a noncoercive framework. The approach adopted is an equilibrium problem formulation associated with a maximal monotone bifunction with pseudomonotone perturbation. We proceed by introducing auxiliary problems that will be studied using a new existence result for equilibrium problems. An example to illustrate the use of the theory is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Panagiotopoulos, P.D.: Non-convex superpotentials in the sence of F.H. Clarke and applications. Mech. Res. Commun. 8, 335–340 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Panagiotopoulos, P.D.: Nonconvex energy functions, hemivariational inequalities and substationarity principle. Acta Mech. 48, 111–130 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhäuser, Boston (1985)

    Book  MATH  Google Scholar 

  4. Panagiotopoulos, P.D., Naniewicz, Z.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995)

    Google Scholar 

  5. Motreanu, D., Panagiotopoulos, P.D.: Minimax Theorem and Qualitative Properties of the Solutions of Hemivariational Inequalities and Applications. Nonconvex Optimization and its Applications, vol. 29. Kluwer Academic, Boston (1999)

    Book  Google Scholar 

  6. Goeleven, R.W., Motreanu, D., Dumont, Y., Rochdi, M.: Variational and Hemivariational Inequalities: Theory, Methods and Applications, vol. I. Kluwer Academic, Boston (2003)

    Google Scholar 

  7. Motreanu, D., Naniewicz, Z.: Topological approach to hemivariational inequalities with unilateral growth condition. J. Anal. Appl. 7, 23–41 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Liu, Z.H.: Elliptic variational hemivariational inequalities. Appl. Math. Lett. 17, 871–876 (2004)

    Google Scholar 

  9. Denkowski, Z., Gasiǹski, L., Papageorgiou, N.S.: Existence and multiplicity of solutions for semilinear hemivariational inequalities at resonance. Nonlinear Anal. 66, 1329–1340 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chadli, O., Chbani, Z., Riahi, H.: Existence results for coercive and noncoercive hemivariational inequalities. Appl. Anal. 69, 125–131 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chadli, O., Schaible, S., Yao, J.-C.: Regularized equilibrium problems with application to noncoercive hemivariational inequalities. J. Optim. Theory Appl. 121, 571–596 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nikaido, H., Isoda, K.: Note on noncooperative convex games. Pac. J. Math. 5, 807–815 (1955)

    Article  MathSciNet  Google Scholar 

  13. Mosco, U.: Implicit variational problems and quasi variational inequalities. In: Gossez, J.P., Lami Dozo, E.J., Mawhin, J., Waelbroeck, L. (eds.) Nonlinear Operators and the Calculus of Variations, Proc. Summer School, Bruxelles, 1975. Lecture Notes in Math., vol. 543, pp. 83–156. Springer, Berlin (1976)

    Chapter  Google Scholar 

  14. Brézis, A., Nirenberg, L., Stampacchia, G.: A remark on Ky Fan’s minimax principle. Boll. UMI (9) I, 257–264 (1972)

    Google Scholar 

  15. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities. Applications to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  16. Gastaldi, F., Tomarelli, F.: Some remarks on nonlinear and noncoercive variational inequalities. Boll. UMI 1B(1), 143–165 (1987)

    MathSciNet  Google Scholar 

  17. Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequality III, pp. 103–113. Academic Press, New York (1972)

    Google Scholar 

  18. Bianchi, B., Schaible, S.: Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90, 31–43 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bianchi, M., Pini, R.: Coercivity conditions for equilibrium problems. J. Optim. Theory Appl. 124, 79–92 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chadli, O., Chbani, Z., Riahi, H.: Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities. J. Optim. Theory Appl. 105, 299–323 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, II/B. Nonlinear Monotone Operators. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  22. Karamardian, S.: Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 18, 445–454 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  23. Maugeri, A., Raciti, F.: On existence theorems for monotone and nonmonotone variational inequalities. J. Convex Anal. 16(3–4), 899–911 (2009)

    MATH  MathSciNet  Google Scholar 

  24. Hadjisavvas, N., Khatibzadeh, H.: Maximal monotonicity of bifunctions. Optimization 59(2), 147–160 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Chang, K.C.: Variational methods for non differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  26. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  27. Baocchi, C., Buttazzo, G., Gastaldi, F., Tomarelli, F.: General existence theorems for unilateral problems in continuum mechanics. Arch. Ration. Mech. Anal. 100(2), 149–189 (1988)

    Article  Google Scholar 

  28. Tomarelli, F.: Noncoercive variational inequalities for pseudomonotone operators. Rend. Semin. Mat. Fis. Milano 61, 141–183 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  29. Adly, S., Goeleven, D., Théra, M.: Recession mappings and noncoercive variational inequalities. Nonlinear Anal. 26, 1573–1603 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Minty, G.J.: Monotone (nonlinear) operators in Hilbert spaces. Duke Math. J. 29, 341–346 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  31. Buttazzo, G., Tomarelli, F.: Compatibility conditions for nonlinear Neumann problems. Adv. Math. 89(2), 127–143 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. Goeleven, D.: Noncoercive hemivariational inequality approach to constrained problems for star-shaped admissible sets. J. Glob. Optim. 9, 121–140 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Brézis, A., Nirenberg, L.: Characterizations of ranges of some nonlinear operators and applications to boundary value problems. Annali Scu. Norm. Sup. Pisa 225–325 (1978)

  34. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  35. Brézis, A., Haraux, A.: Image d’une somme d’opérateurs monotones et applications. Isr. J. Math. 23, 165–186 (1976)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Grant NSC 102-2115-M-037-002-MY3.

The authors would like to thank the anonymous referees for their constructive comments, which contributed to the improvement of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahmdani, A., Chadli, O. & Yao, J.C. Existence of Solutions for Noncoercive Hemivariational Inequalities by an Equilibrium Approach Under Pseudomonotone Perturbation. J Optim Theory Appl 160, 49–66 (2014). https://doi.org/10.1007/s10957-013-0374-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0374-9

Keywords

Navigation