Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Optimal Error Analysis of a FEM for Fractional Diffusion Problems by Energy Arguments

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, the piecewise-linear finite element method (FEM) is applied to approximate the solution of time-fractional diffusion equations on bounded convex domains. Standard energy arguments do not provide satisfactory results for such a problem due to the low regularity of its exact solution. Using a delicate energy analysis, a priori optimal error bounds in \(L^2(\varOmega )\)-, \(H^1(\varOmega )\)-norms, and a quasi-optimal bound in \(L^{\infty }(\varOmega )\)-norm are derived for the semidiscrete FEM for cases with smooth and nonsmooth initial data. The main tool of our analysis is based on a repeated use of an integral operator and use of a \(t^m\) type of weights to take care of the singular behavior of the continuous solution at \(t=0\). The generalized Leibniz formula for fractional derivatives is found to play a key role in our analysis. Numerical experiments are presented to illustrate some of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cockburn, B., Mustapha, K.: A hybridizable discontinuous Galerkin method for fractional diffusion problems. Numer. Math. 130, 293–314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, C.M., Liu, F., Anh, V., Turner, I.: Numerical methods for solving a two-dimensional variable-order anomalous sub-diffusion equation. Math. Comput. 81, 345–366 (2012)

    Article  MATH  Google Scholar 

  4. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusive-wave equations. Math. Comput. 75, 673–696 (2006)

    Article  MATH  Google Scholar 

  5. Cui, M.: Compact alternating direction implicit method for two-dimensional time fractional diffusion equation. J. Comput. Phys. 231, 2621–2633 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, 445–466 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jin, B., Lazarov, R., Pascal, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561–582 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karaa, S., Mustapha, K., Pani, A.K.: Finite volume element method for two-dimensional fractional subdiffusion problems. IMA J. Numer. Anal. 37, 945–964 (2017)

    MathSciNet  Google Scholar 

  9. Křìžek, M., Neittaanmäki, P.: On a global superconvergence of the gradient of linear triangular elements. J. Comput. Appl. Math. 18, 221–233 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52, 123–138 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. McLean, W.: Fast summation by interval clustering for an evolution equation with memory. SIAM J. Sci. Comput. 34, 3039–3056 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. McLean, W., Mustapha, K.: Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J. Comput. Phys. 293, 201–217 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. McLean, W., Thomée, V.: Numerical solution via Laplace transforms of a fractional order evolution equation. J. Integral Equ. Appl. 22, 57–94 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. McLean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional order evolution equation. IMA J. Numer. Anal. 30, 208–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mustapha, K.: An implicit finite difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA J. Numer. Anal. 31, 719–739 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mustapha, K., McLean, W.: Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algorithms 56, 159–184 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mustapha, K., Schötzau, D.: Well-posedness of \(hp-\)version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1226–1246 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ren, J., Sun, Z.Z.: Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions. J. Sci. Comput. 56, 381–408 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  20. Zhang, Y.N., Sun, Z.Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230, 8713–8728 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kassem Mustapha.

Additional information

The valuable comments of the referees improved the paper. The support of the Science Technology Unit at KFUPM through King Abdulaziz City for Science and Technology (KACST) under National Science, Technology and Innovation Plan (NSTIP) Project No. 13-MAT1847-04 is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaa, S., Mustapha, K. & Pani, A.K. Optimal Error Analysis of a FEM for Fractional Diffusion Problems by Energy Arguments. J Sci Comput 74, 519–535 (2018). https://doi.org/10.1007/s10915-017-0450-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0450-7

Keywords

Navigation