Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Mixture surrogate models based on Dempster-Shafer theory for global optimization problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Recent research in algorithms for solving global optimization problems using response surface methodology has shown that it is in general not possible to use one surrogate model for solving different kinds of problems. In this paper the approach of applying Dempster-Shafer theory to surrogate model selection and their combination is described. Various conflict redistribution rules have been examined with respect to their influence on the results. Furthermore, the implications of the surrogate model type, i.e. using combined, single or a hybrid of both, have been studied. The suggested algorithms were applied to several well-known global optimization test problems. The results indicate that the used approach leads for all problems to a thorough exploration of the variable domain, i.e. the vicinities of global optima could be detected, and that the global minima could in most cases be approximated with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appel, M.J., Labarre, R., Radulović, D.: On accelerated random search. SIAM J. Optim. 14708–14731 (2003)

  2. Björkman M., Holmström K.: Global optimization of costly nonconvex functions using radial basis functions. Optim. Eng. 1, 373–397 (2001)

    Article  Google Scholar 

  3. Currin, C., Mitchell, T., Morris M., Ylvisaker, D.: A bayesian approach to the design and analysis of computer experiments. Technical report, Oak Ridge National Laboratory, Oak Ridge, TN (1988)

  4. Dempster A.P.: A generalization of bayesian inference. J. R. Stat. Soc. Series B 30, 205–247 (1968)

    Google Scholar 

  5. Duchon J.: Constructive Theory of Functions of Several Variables. Springer, Berlin (1977)

    Google Scholar 

  6. Friedman J.H.: Multivariate adaptive regresion splines. Ann. Stat. 19, 1–141 (1991)

    Article  Google Scholar 

  7. Glaz B., Friedmann P.P., Liu L.: Surrogate based optimization of helicopter rotor blades for vibration reduction in forward flight. Struct. Multidiscip. Optim. 35, 341–363 (2008)

    Article  Google Scholar 

  8. Goel T., Haftka R.T., Shyy W., Queipo N.V.: Ensemble of surrogates. Struct. Multidiscip. Optim. 33, 199–216 (2007)

    Article  Google Scholar 

  9. Holmström K.: An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization. J. Glob. Optim. 41, 447–464 (2008)

    Article  Google Scholar 

  10. Inagaki T.: Interdependence between safety-control policy and multiple-sensor schemes via Dempster-Shafer theory. IEEE Trans. Reliab. 40, 182–188 (1991)

    Article  Google Scholar 

  11. Jones D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21, 345–383 (2001)

    Article  Google Scholar 

  12. Jones D.R., Schonlau M., Welch W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998)

    Article  Google Scholar 

  13. Lam, X.B., Kim, Y.S., Hoang, A.D., Park, C.W.: Coupled aerostructural design optimization using the kriging model and integrated multiobjective optimization algorithm. J. Optim. Theory Appl. (2009). doi:10.1007/s10957-009-9520-9

    Google Scholar 

  14. Liao X., Li Q., Yang X., Zhang W., Li W.: Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Struct. Multidiscip. Optim. 35, 561–569 (2008)

    Article  Google Scholar 

  15. Lopheven, S.N., Nielsen, H.B., Søndergaard, J.: DACE a matlab kriging toolbox. Technical report, Technical Report IMM-TR-2002-12 (2002)

  16. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, California (1967)

  17. Martin J.D., Simpson T.W.: Use of kriging models to approximate deterministic computer models. AIAA J. 43, 853–863 (2005)

    Article  Google Scholar 

  18. Matheron G.: Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1963)

    Article  Google Scholar 

  19. Morgans R.C., Zander A.C., Hansen C.H., Murphy D.J.: EGO shape optimization of horn-loaded loudspeakers. Optim. Eng. 9, 361–374 (2008)

    Article  Google Scholar 

  20. Myers R.H., Montgomery D.C.: Response Surface Methodology, Process and Product Optimization using Designed Experiments. Wiley, London (1995)

    Google Scholar 

  21. Powell, M.J.D.: The Theory of Radial Basis Function Approximation in 1990. Advances in Numerical Analysis, vol. 2: wavelets, subdivision algorithms and radial basis functions, pp. 105–210. Oxford University Press, Oxford (1992)

  22. Powell, M.J.D.: Recent Research at Cambridge on Radial Basis Functions. New Developments in Approximation Theory, pp. 215–232. Birkhäuser, Basel (1999)

  23. Queipo N.V., Haftka R.T, Shyy W., Goel T., Vaidyanathan R., Tucker P.K.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41, 1–28 (2005)

    Article  Google Scholar 

  24. Regis R.G., Shoemaker C.A.: Constrained global optimization of expensive black box functions using radial basis functions. J. Glob. Optim. 31, 153–171 (2005)

    Article  Google Scholar 

  25. Regis R.G., Shoemaker C.A.: Improved strategies for radial basis function methods for global optimization. J. Glob. Optim. 37, 113–135 (2007)

    Article  Google Scholar 

  26. Shafer G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Google Scholar 

  27. Smarandache, F., Dezert, J.: Information fusion based on new proportional conflict redistribution rules. In: 7th International Conference on Information Fusion, pp. 907–914. (2005)

  28. Viana, F.A.C., Haftka, R.T.: Using multiple surrogates for minimization of the RMS error in metamodeling. In: Proceedings of the ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference DETC2008-49240 (2008)

  29. Yager R.R.: On the Dempster-Shafer framework and new combination rules. Inf. Sci. 41, 93–137 (1987)

    Article  Google Scholar 

  30. Yang R.J., Wang N., Tho C.H., Bobineau J.P., Wang B.P.: Metamodeling development for vehicle frontal impact simulation. J. Mech. Des. 127, 1014–1021 (2005)

    Article  Google Scholar 

  31. Zadeh L.A.: Review of book: a mathematical theory of evidence. AI Mag. 5, 81–83 (1984)

    Google Scholar 

  32. Zhu, P., Zhang, Y., Chen, G.-L.: Metamodel-based lightweight design of an automotive front-body structure using robust optimization. In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering (2009). doi:10.1243/09544070JAUTO1045

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliane Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, J., Piché, R. Mixture surrogate models based on Dempster-Shafer theory for global optimization problems. J Glob Optim 51, 79–104 (2011). https://doi.org/10.1007/s10898-010-9620-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9620-y

Keywords

Navigation