Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In recent times the Douglas–Rachford algorithm has been observed empirically to solve a variety of nonconvex feasibility problems including those of a combinatorial nature. For many of these problems current theory is not sufficient to explain this observed success and is mainly concerned with questions of local convergence. In this paper we analyze global behavior of the method for finding a point in the intersection of a half-space and a potentially non-convex set which is assumed to satisfy a well-quasi-ordering property or a property weaker than compactness. In particular, the special case in which the second set is finite is covered by our framework and provides a prototypical setting for combinatorial optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aragón Artacho, F.J., Borwein, J.M., Tam, M.K.: Douglas–Rachford feasibility methods for matrix completion problems. ANZIAM J. 55(4), 299–326 (2014). doi:10.1017/S1446181114000145

    Article  MathSciNet  MATH  Google Scholar 

  2. Aragón Artacho, F.J., Borwein, J.M.: Global convergence of a non-convex Douglas–Rachford iteration. J. Glob. Optim. 57(3), 753–769 (2013). doi:10.1007/s10898-012-9958-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Aragón Artacho, F.J., Borwein, J.M., Tam, M.K.: Recent results on Douglas–Rachford methods for combinatorial optimization problem. J. Optim. Theory. Appl. 163(1), 1–30 (2014). doi:10.1007/s10957-013-0488-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Borwein, J.M., Tam, M.K.: Reflection methods for inverse problems with application to protein conformation determination. In: Generalized Nash Equilibrium Problems, Bilevel programming and MPEC, New Delhi (2012), (in press)

  5. Borwein, J.M., Tam, M.K.: A cyclic Douglas–Rachford iteration scheme. J. Optim. Theory Appl. 160(1), 1–29 (2014). doi:10.1007/s10957-013-0381-x

    Article  MathSciNet  MATH  Google Scholar 

  6. Borwein, J.M., Tam, M.K.: The cyclic Douglas–Rachford method for inconsistent feasibility problems. J. Nonlinear Convex Anal. 16(4), 537–584 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Dao, M.N., Moursi, W.M.: The Douglas–Rachford algorithm in the affine-convex case. arXiv:1505.06408v1

  8. Bauschke, H.H., Koch, V.R.: Projection methods: Swiss army knives for solving feasibility and best approximation problems with halfspaces. Contemp. Math. 636, 1–40 (2015). doi:10.1090/conm/636

    Article  MathSciNet  MATH  Google Scholar 

  9. Bauschke, H.H., Noll, D.: On the local convergence of the Douglas–Rachford algorithm. Arch. Math. 102, 589–600 (2014). doi:10.1007/s00013-014-0652-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. JOSA A 19(7), 1334–1345 (2002). doi:10.1364/JOSAA.19.001334

    Article  MathSciNet  Google Scholar 

  11. Benoist, J.: The Douglas–Rachford algorithm for the case of the sphere and the line. J. Global Optim. (2015). doi:10.1007/s10898-015-0296-1

  12. Borwein, J.M., Sims, B.: The Douglas–Rachford algorithm in the absence of convexity. In: Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 93–109. Springer, New York (2011). doi:10.1007/978-1-4419-9569-8

  13. Elser, V., Rankenburg, I., Thibault, P.: Searching with iterated maps. Proc. Natl. Acad. Sci. 104(2), 418–423 (2007). doi:10.1073/pnas.0606359104

    Article  MathSciNet  MATH  Google Scholar 

  14. Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013). doi:10.1137/120902653

    Article  MathSciNet  MATH  Google Scholar 

  15. Hesse, R., Luke, D.R., Neumann, P.: Alternating projections and Douglas–Rachford for sparse affine feasibility. IEEE. Trans. Signal Proc. 62(18), 4868–4881 (2014). doi:10.1109/TSP.2014.2339801

    Article  MathSciNet  Google Scholar 

  16. Gravel, S., Elser, V.: Divide and concur: a general approach to constraint satisfaction. Phys. Rev. E 78(3), 036706 (2008). doi:10.1103/PhysRevE.78.036706

    Article  Google Scholar 

  17. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1999)

    MATH  Google Scholar 

  18. Phan, H.M.: Linear convergence of the Douglas–Rachford method for two closed sets. Optim. (2015). doi:10.1080/02331934.2015.1051532

Download references

Acknowledgments

We would like to thank the anonymous referee for their helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Aragón Artacho.

Additional information

F.J. Aragón Artacho was supported by MINECO of Spain and FEDER of EU, as part of the Ramón y Cajal program (RYC-2013-13327) and the Grant MTM2014-59179-C2-1-P. J.M. Borwein was supported, in part, by the Australian Research Council. M.K. Tam was supported by an Australian Post-Graduate Award.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aragón Artacho, F.J., Borwein, J.M. & Tam, M.K. Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem. J Glob Optim 65, 309–327 (2016). https://doi.org/10.1007/s10898-015-0380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0380-6

Keywords

Mathematics Subject Classification

Navigation