Abstract
We present a novel optimization algorithm for computing the ranges of multivariate polynomials using the Bernstein polynomial approach. The proposed algorithm incorporates four accelerating devices, namely the cut-off test, the simplified vertex test, the monotonicity test, and the concavity test, and also possess many new features, such as, the generalized matrix method for Bernstein coefficient computation, a new subdivision direction selection rule and a new subdivision point selection rule. The features and capabilities of the proposed algorithm are compared with those of other optimization techniques: interval global optimization, the filled function method, a global optimization method for imprecise problems, and a hybrid approach combining simulated annealing, tabu search and a descent method. The superiority of the proposed method over the latter methods is illustrated by numerical experiments and qualitative comparisons.
Similar content being viewed by others
References
Berchtold J., Bowyer A.: Robust arithmetic for multivariateBernstein-form polynomials. Comput. Aided Geom. Des. 32, 681–689 (2000)
Berchtold, J., Voiculescu, I., Bowyer, A.: Multivariate Bernstein form polynomials. Technical Report 31/98, School of Mechanical Engineering (1998)
Cox, D., Little, J., O’Shea, D.: Using algebraic geometry. In: Graduate Texts in Mathematics, vol. 185. Springer-Verlag, New York (1998)
Farouki R.T., Rajan V.T.: On the numerical condition of polynomials in Bernstein form. Comput. Aided Geom. Des. 4, 191–216 (1987)
Garloff J.: The Bernstein algorithm. Interval Comput. 2, 154–168 (1993)
Garloff J.: The Bernstein expansion and its applications. J. Am. Romanian Acad. 25–27, 80–85 (2003)
Garloff J., Smith A.P.: Solution of systems of polynomial equations by using Bernstein expansion. In: Alefeld, G., Rohn, J., Rump, S., Yamamoto, T. (eds) Symbolic Algebraic Methods and Verification Methods, pp. 87–97. Springer, New York (2001)
Garloff J., Smith A.P.: A comparison of methods for the computation of affine lower bound functions for polynomials. In: Jermann, C., Neumaier, A., Sam, D. (eds) Global Optimization and Constraint Satisfaction: 2nd International Workshop, COCOS 2003, Lecture Notes in Computer Science, pp. 71–85. Springer, Berlin (2005)
Garloff J., Jansson C., Smith A.P.: Lower bound functions for polynomials. J. Comput. Appl. Math. 157(1), 207–225 (2003)
Ge R.P., Qin Y.F.: A class of filled functions for finding global minimizers of a function of several variables. J. Optim. Theory Appl. 54(2), 241–252 (1987)
Ge R., Qin Y.: The globally convexized filled functions for global optimization. Appl. Math. Comput. 35, 131–158 (1990)
Hammer R., Hocks M., Kulisch U., Ratz D.: Numerical Toolbox for Verified Computing I. Springer Verlag, Heidelberg, New York (1993)
Hansen E.R.: Nonlinear equations and optimization. Comput. Math. Appl. 25(10/11), 125–145 (1993)
Hansen E.R., Walster G.W.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (2004)
Henrion D., Lasserre J.B.: Gloptipoly: global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math. Soft. 29, 165–194 (2003)
Horst R., Pardalos P.M.: Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht (1995)
Jibetean D., Laurent M.: Semidefinite approximations for global unconstrained polynomial optimization. SIAM J. Optim. 16(2), 490–514 (2005)
Kearfott R.B.: Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Dordrecht (1996)
Li H.L., Chang C.T.: An approximate approach of global optimization for polynomial programming problems. Eur. J. Oper. Res. 107, 625–632 (1998)
Lorenz C.G.: Bernstein Polynomials. University of Toronto Press, Toronto (1953)
Malan, S., Milanese, M., Taragna, M., Garloff, J.: B3 algorithm for robust performance analysis in presence of mixed parametric and dynamic perturbations. In: Proceedings of the 31st Conference on Decision and Control, pp. 128–133. Tucson, Arizona (1992)
Moore R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)
Nataraj P.S.V., Kotecha K.: An improved interval global optimization algorithm using higher order inclusion function forms. J. Global Optim. 32(1), 35–63 (2005)
Parrilo, P.A., Sturmfels, B.: Minimizing polynomial functions. In: Basu, S., Gonzales-Vega, L. (eds.) Algorithmic and Quantitative Real Algebraic Geometry, vol. 60 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science (2003)
Pinter J.D .: Global optimization: software, test problems, and applications. In: Pardalos, P.M., Romeijn, H.E. (eds) Handbook of Global Optimization, vol. 2, pp. 515–569. Kluwer Academic Publishers, London (2002)
Ratschek H., Rokne J.: Computer Methods for the Range of Functions. Ellis Horwood, New York (Chichester) (1984)
Ray, S.: A new appraoch to range computation of polynomials using the Bernstein form. PhD Thesis, System and Control Engineering, Indian Institute of Technology, Bombay, India (2007)
Salhi S., Queen N.M.: A hybrid algorithm for detecting global and local minima when optimizing functions with many minima. Eur. J. Oper. Res. 155, 51–67 (2004)
Smith, A.P.: Fast construction of constant bound functions for sparse polynomials. J. Global Optim. July (2007, published online)
Sun Microsystems, Palo Alto, CA, USA. Forte FORTRAN 95 User Manual (2001)
Verschelde, J.: The PHC pack, the database of polynomial systems. Technical Report, University of Illinois, Mathematics Department, Chicago, USA (2001)
Vrahatis M.N.: A generalized bisection method for large and imprecise problems. In: Alefeld, G., Frommer, A., Lang, B. (eds) Scientifc Computing and Validated Numerics, pp. 186–192. Akademie Verlag, Berlin (1996)
Vrahatis M.N., Sotiropoulos D.G., Triantafyllou E.C.: Global optimization for imprecise problems. In: Bomze, I.M., Csendes, T., Horst, R., Pardalos, P.M. (eds) Developments in Global Optimization, pp. 37–54. Kluwer, The Netherlands (1997)
Wolfe M.A.: Interval methods for global optimization. Appl. Math. Comput. 75(2–3), 179–206 (1996)
Zettler M., Garloff J.: Robustness analysis of polynomials with polynomial parameter dependency using Bernstein expansion. IEEE Trans. Automatic Control 43(3), 425–431 (1998)
Zhang L.S., Ng C.K., Li D., Tian W.W.: A new filled function method for global optimization. J. Global Optim. 28, 17–43 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ray, S., Nataraj, P.S.V. An efficient algorithm for range computation of polynomials using the Bernstein form. J Glob Optim 45, 403–426 (2009). https://doi.org/10.1007/s10898-008-9382-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-008-9382-y