Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A modified extragradient method for inverse-monotone operators in Banach spaces

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We introduce an iterative procedure for finding a point in the zero set (a solution to 0 ∈ A(v) and vC) of an inverse-monotone or inverse strongly-monotone operator A on a nonempty closed convex subset C in a uniformly smooth and uniformly convex Banach space. We establish weak convergence results under suitable assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber Ya.I.: Metric and generalized projection operators in banach spaces: properties and applications In: Kartsatos A. (eds). Theory and applications of nonlinear operators of monotone and accretive type, pp. 15–50. Marcel Dekker, New York (1996)

    Google Scholar 

  2. Barbu V., Precupanu Th.: Convexity and Optimization in Banach Spaces. Romania International Publishers, Bucuresti (1978)

    Google Scholar 

  3. Butnariu D., Iusem A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization. Kluwer Academic Publishers , Dordrecht (2000)

    Google Scholar 

  4. Butnariu D., Iusem A.N., Zalinescu C.: On uniform convexity, total convexity and convergence of the proximal point and outer Bregman projection algorithms in Banach spaces. J. Convex Anal. 10, 35–61 (2003)

    Google Scholar 

  5. Butnariu D., Resmerita E.: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal. 84919, 39 (2006)

    Google Scholar 

  6. Burachik R.S., Scheimberg S.: A proximal point method for the variational inequality problem in Banach spaces. SIAM J. Control Optim. 39(5), 1633–1649 (2001)

    Article  Google Scholar 

  7. Herings P.J., Koshevoy G.A., Talman A.J., Yang Z.: General existence theorem of zero points. J. Optim. Theory Appl. 120, 375–394 (2004)

    Article  Google Scholar 

  8. Iiduka H., Takahashi W.: Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings. Nonlinear Anal. 61, 341–350 (2005)

    Article  Google Scholar 

  9. Kamimura S., Kohsaka F., Takahashi W.: Weak and strong convergence theorem for maximal monotone operators in a Banach space. Set-Valued Anal. 12, 417–429 (2004)

    Article  Google Scholar 

  10. Kamimura S., Takahashi W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13, 938–945 (2003)

    Article  Google Scholar 

  11. Li L., Song W.: A hybrid of extragradient method and proximal point algorithm for inverse strongly-monotone operators and maximal monotone operators in Banach spaces. Nonlinear Anal. Hybrid Syst. 1, 398–413 (2007)

    Article  Google Scholar 

  12. Matsushita S., Takahashi W.: On the existence of zeros of monotone operators in reflexive Banach spaces. J. Math. Anal. Appl. 323, 1354–1364 (2006)

    Article  Google Scholar 

  13. Minty G.: On a “monotonicity” method for the solution of nonlinear equations in Banach spaces. Proc. Natl. Acad. Sci. USA 50, 1038–1041 (1963)

    Article  Google Scholar 

  14. Rockafellar R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Article  Google Scholar 

  15. Takahashi W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

    Google Scholar 

  16. Xu H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127–1138 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Song, W. A modified extragradient method for inverse-monotone operators in Banach spaces. J Glob Optim 44, 609–629 (2009). https://doi.org/10.1007/s10898-008-9361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-008-9361-3

Keywords

Mathematics Subject Classification (2000)

Navigation