Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Optimization of nearest neighbor classifiers via metaheuristic algorithms for credit risk assessment

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The classification problem consists of using some known objects, usually described by a large vector of features, to induce a model that classifies others into known classes. The present paper deals with the optimization of Nearest Neighbor Classifiers via Metaheuristic Algorithms. The Metaheuristic Algorithms used include tabu search, genetic algorithms and ant colony optimization. The performance of the proposed algorithms is tested using data from 1411 firms derived from the loan portfolio of a leading Greek Commercial Bank in order to classify the firms in different groups representing different levels of credit risk. Also, a comparison of the algorithm with other methods such as UTADIS, SVM, CART, and other classification methods is performed using these data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aha D.W. and Bankert R.L. (1996). A comparative evaluation of sequential feature selection algorithms. In: Fisher, D. and Lenx, J.-H. (eds) Artificial Intelligence and Statistics, pp 12. Springer-Verlag, New York

    Google Scholar 

  2. Breiman L., Friedman J., Olshen R. and Stone C.J. (1984). Classification and Regression Trees. Chapman and Hall, New York

    Google Scholar 

  3. Cantu-Paz, E.: Feature Subset Selection, Class Separability, and Genetic Algorithms. Genetic and Evolutionary Computation Conference, pp. 959–970 (2004)

  4. Cantu-Paz, E., Newsam, S., Kamath, C.: Feature selection in scientific application. In: Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 788–793 (2004)

  5. Dorigo M. and Stutzle T. (2004). Ant Colony Optimization, A Bradford Book. The MIT Press, Cambridge

    Google Scholar 

  6. Doumpos, M., Zopounidis, C.: Multicriteria Decision Aid Classification Methods Kluwer Academic Publishers, Dordrecht (2002)

  7. Doumpos M., Kosmidou K., Baourakis G. and Zopounidis C. (2002). Credit risk assessment using a multicriteria hierarchical discrimination approach: a comparative analysis. Eur. J. Oper. Res. 138: 392–412

    Article  Google Scholar 

  8. Duda R.O., Hart P.E. and Stork D.G. (2001). Pattern Classification and Scene Analysis 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  9. Giudici P. (2003). Applied Data Mining: Statistical Methods for Business and Industry. John Wiley and Sons, Chichester

    Google Scholar 

  10. Glover F. (1989). Tabu search I. ORSA J. Comput. 1(3): 190–206

    Google Scholar 

  11. Glover F. (1990). Tabu search II. ORSA J. Comput. 2(1): 4–32

    Google Scholar 

  12. Goldberg D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, INC, Massachussets

    Google Scholar 

  13. Hastie T., Tibshirani R. and Friedman J. (2001). The Elements of Statistical Learning; Data mining, Inference, and Prediction. Springer Series in Statistics, Springer-Verlag, New York

    Google Scholar 

  14. Holland J.H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  15. Huberty C.J. (1994). Applied Discriminant Analysis. John Wiley, New York

    Google Scholar 

  16. Jacquet-Lagrèze E. (1995). An application of the UTA discriminant model for the evaluation of R&D projects. In: Pardalos, P.M., Siskos, Y. and Zopounidis, C. (eds) Advances in Multicriteria Analysis, pp 203–211. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  17. Jain A. and Zongker D. (1997). Feature selection: evaluation, application and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence 19: 153–158

    Article  Google Scholar 

  18. Kira, K., Rendell, L.: A practical approach to feature selection. In:Proceedings of the Ninth International Conference on Machine Learning, pp. 249–256. Aberdeen, Scotland (1992)

  19. Kohavi R. and John G. (1997). Wrappers for feature subset selection. Artif Intelli 97: 273–324

    Article  Google Scholar 

  20. Lopez F.G., Torres M.G., Batista B.M., Perez J.A.M. and Moreno-Vega J.M. (2006). Solving feature subset selection problem by a parallel scatter search. Eur. J. Oper. Res. 169: 477–489

    Article  Google Scholar 

  21. Marinakis Y., Migdalas A. and Pardalos P.M. (2005). A hybrid genetic-GRASP algorithm using langrangean relaxation for the traveling salesman problem. J. Combi. Optim. 10: 311–326

    Article  Google Scholar 

  22. Narendra P.M. and Fukunaga K. (1977). A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 26(9): 917–922

    Article  Google Scholar 

  23. Pudil P., Novovicova J. and Kittler J. (1994). Floating search methods in feature selection. Pattern Recognit. Lett. 15: 1119–1125

    Article  Google Scholar 

  24. Reeves C.R.  (1995). Genetic algorithms. In: Reeves, C.R. (eds) Modern Heuristic Techniques for Combinatorial Problems, pp 151–196. McGraw - Hill, London

    Google Scholar 

  25. Reeves C.R. (2003). Genetic algorithms. In: Glover, F. and Kochenberger, G.A. (eds) Handbooks of Metaheuristics, pp 55–82. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  26. Rego C. and Glover F. (2002). Local search and metaheuristics. In: Gutin, G. and Punnen, A. (eds) The Traveling Salesman Problem and its Variations, pp 309–367. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  27. Siedlecki W. and Sklansky J. (1989). A note on genetic algorithms for large-scale feature selection. Pattern Recognition Lett. 10: 335–347

    Article  Google Scholar 

  28. Siedlecki W. and Sklansky J. (1988). On automatic feature selection. Int. J. Pattern Recogn. Artif. Intell. 2(2): 197–220

    Article  Google Scholar 

  29. Specht D. (1990). Probabilistic neural networks. Neural Networks 3: 109–118

    Article  Google Scholar 

  30. Vapnik V.N. (1998). Statistical Learning Theory. Wiley, New York

    Google Scholar 

  31. Zhang, C., Hu, H.: Ant colony optimization combining with mutual information for feature selection in support vector machines. In: Zhang, S., Jarvis, R. (eds.) AI 2005, pp. 918–921. LNAI 3809 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Zopounidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinakis, Y., Marinaki, M., Doumpos, M. et al. Optimization of nearest neighbor classifiers via metaheuristic algorithms for credit risk assessment. J Glob Optim 42, 279–293 (2008). https://doi.org/10.1007/s10898-007-9242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9242-1

Keywords

Navigation