Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Choosing reverse channels under collection responsibility sharing in a closed-loop supply chain with re-manufacturing

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper considers a closed-loop supply chain with re-manufacturing consisting of retailers, manufacturers and third-party logistics service providers; all participating in the product recycling responsibilities. The effectiveness of methods that can be used to share responsibilities amongst these parties is quantified using different reverse channels. First, re-manufacturing models with three different reverse channels for retailer collection, manufacturer collection and third-party collection are developed using collection responsibility sharing. Next, by comparing these models with the case of no collection responsibility sharing, the effectiveness of responsibility sharing is analysed and quantified. The results for the three models support the following conclusions: (i) from the point of view of the retailer, third-party collection is always the worst choice; (ii) the choice between retailer collection and manufacturer collection depends on the cost parameter representing the resources required in performing the reverse collection tasks; (iii) from the point of view the manufacturer, when the value of the cost parameter is small, collection by manufacturer is the best choice; retailer collection will be best for high values of the cost parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atasu, A., Sarvary, M., & Van Wassenhove, L. N. (2008). Re-manufacturing as a marketing strategy. Management Science, 54(10), 1731–1746.

    Article  Google Scholar 

  • Debo, L., Toktay, B., & Van Wassenhove, L. N. (2005). Market segmentation and product technology selection for re-manufacturable products. Management Science, 51(8), 1193–1205.

    Article  Google Scholar 

  • Ferguson, M., Daniel, G. J., Koca, E., et al. (2009). The value of quality grading in re-manufacturing. Production and Operations Management, 18(3), 300–314.

    Article  Google Scholar 

  • Galbreth, M. R., & Blackburn, J. D. (2010). Optimal acquisition quantities in re-manufacturing with condition uncertainty. Production and Operations Management, 19(1), 61–69.

    Article  Google Scholar 

  • Gerinsek, G., Petersen, S. A., & Heikura, T. (2011). Contextually enriched competence model in the field of sustainable manufacturing for simulation style technology enhanced learning environments. Journal of Intelligent Manufacturing. doi:10.1007/s10845-011-0554-0.

  • Geyer, R., Van Wassenhove, L. N., & Atasu, A. (2007). The economics of re-manufacturing under limited component durability and finite product life cycles. Management Science, 53(1), 88–100.

    Article  Google Scholar 

  • Guide, V. D., Jayaramanb, V., & Lintonc, J. D. (2003). Building contingency planning for closed-loop supply chains with product recovery. Journal of Operations Management, 21(3), 259–279.

    Article  Google Scholar 

  • Jacobs, B. W., & Subramanian, R. (2012). Sharing responsibility for product recovery across the supply chain. Production and Operations Management, 21(1), 85–100.

    Article  Google Scholar 

  • Jung, K. S., & Hwang, H. (2011). Competition and cooperation in a re-manufacturing system with take-back requirement. Journal of Intelligent Manufacturing, 22(3), 427–433.

    Article  Google Scholar 

  • Ketzenberg, M. E., & Zuidwijk, R. A. (2009). Optimal pricing, ordering, and return policies for consumer goods. Production and Operations Management, 18(3), 344–360.

    Article  Google Scholar 

  • Le, T. P. N., & Lee, T. (2011). Model selection with considering the \(\text{ CO }_{2}\) emission alone the global supply chain. Journal of Intelligent Manufacturing. doi:10.1007/s10845-011-0613-6.

  • Majumder, P., & Groenevelt, H. (2001). Competition in re-manufacturing. Production Operations Management, 10(2), 125–141.

    Google Scholar 

  • Naeem, M. A., Dias, D. J., Tibrewal, R., et al. (2012). Production planning optimization for manufacturing and re-manufacturing system in stochastic environment. Journal of Intelligent Manufacturing. doi:10.1007/s10845-011-0619-0.

  • Nie, J., Huang, Z., Zhao, Y., et al. (2013). Collective recycling responsibility in closed-loop fashion supply chains with a third party: Financial sharing or physical sharing? Mathematical Problems in Engineering. doi:10.1155/2013/176130.

  • Oh, Y. H., & Hwang, H. (2006). Deterministic inventory model for recycling system. Journal of Intelligent Manufacturing, 17(4), 423–428.

    Article  Google Scholar 

  • Savaskan, R. C., & Van Wassenhove, L. N. (2006). Reverse channel design: The case of competing retailers. Management Science, 52(1), 1–14.

    Article  Google Scholar 

  • Savaskan, R. C., Bhattacharya, S., & Van Wassenhove, L. N. (2004). Closed-loop supply chain models with product re-manufacturing. Management Science, 50(2), 239–252.

    Article  Google Scholar 

  • Sehultmann, F., Zumkeller, M., & Rentz, O. (2006). Modelling reverse logistic tasks within closed-loop supply chains: An example from the automotive industry. European Journal of Operational Research, 171(3), 1033–1050.

    Article  Google Scholar 

  • Subramanian, R., Gupta, S., & Talbot, B. (2009). Product design and supply chain coordination under extended producer responsibility. Production and Operations Management, 18(3), 259–277.

    Article  Google Scholar 

  • Takahashi, K., Doi, Y., Hirotani, D., et al. (2012). An adaptive pull strategy for re-manufacturing systems. Journal of Intelligent Manufacturing. doi:10.1007/s10845-012-0710-1.

  • Toktay, L. B., & Wei, D. (2011). Cost Allocation in manufacturing/re-manufacturing operations. Production and Operations Management, 20(6), 841–847.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of National Natural Science Foundation of China (71090402, 71101120 and 71101055), Fundamental Research Funds for the Central universities, SCUT, (No. 2011ZM0079), Educational Commission of Guangdong Province (wym11011) and the Guangdong Natural Science Foundation (S2011040002521).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajia Nie.

Appendix

Appendix

Proof of Proposition 2

The differences of optimum selling prices \((p)\), collection rates \((\tau )\) and wholesale prices \((\omega )\) between Model R and Model RM are,

$$\begin{aligned}&p^{RM}-p^{R}=-\frac{k\left( {a-bc_m } \right) \left( {2\Delta -\varpi } \right) ^{2}}{\left( {4k-b\Delta \varpi } \right) \left( {32k-b\left( {2\Delta +\varpi } \right) ^{2}} \right) }<0,\nonumber \\ \end{aligned}$$
(44)
$$\begin{aligned}&\tau ^{RM}-\tau ^{R}\nonumber \\&\quad =\frac{\left( {a-bc_m } \right) \left( {2\Delta -\varpi } \right) \left( {16k-b\varpi ^{2}-2b\Delta \varpi } \right) }{\left( {4k-b\Delta \varpi } \right) \left( {32k-b\left( {2\Delta +\varpi } \right) ^{2}} \right) }>0,\nonumber \\ \end{aligned}$$
(45)
$$\begin{aligned}&\omega ^{RM}-\omega ^{R}\nonumber \\&\quad =\frac{k\left( {a-bc_m } \right) \left( {2\Delta -\varpi } \right) \left( {4k\left( {5\varpi -2\Delta } \right) -b\varpi ^{2}\left( {2\Delta +\varpi } \right) } \right) }{2\left( {4k-b\Delta \varpi } \right) \left( {32k-b\left( {2\Delta +\varpi } \right) ^{2}} \right) }.\nonumber \\ \end{aligned}$$
(46)

To analyse whether the formula (46) is positive or negative, it is only needed to analyse the expression of \(( 4k( {5\varpi -2\Delta } )- b\varpi ^{2}( {2\Delta +\varpi } ) )\). Three situations are identified: (1) when \(0<\varpi <{2\Delta }/5\), \(4k\left( {5\varpi -2\Delta } \right) - b\varpi ^{2}\left( {2\Delta +\varpi } \right) <0\), then \(\omega ^{RM}<\omega ^{R}\); (2) when \({2\Delta }/5<\varpi <{2\Delta }/3\), let \(k_1 ={b\varpi ^{2}\left( {2\Delta +\varpi } \right) }/{\left( {4\left( {5\varpi -2\Delta } \right) } \right) }\), which is larger than \(k_0 \), then, if \(k>k_1 \), \(\omega ^{RM}>\omega ^{R}\); and if \(k_0 <k<k_1 \), \(\omega ^{RM}<\omega ^{R}\); and (3) when \({2\Delta }/3<\varpi <\Delta \),\(k_1 <k_0 \), then \(\omega ^{RM}>\omega ^{R}\).

Proof of Proposition 3

The differences of the retailer’s and manufacturer’s profits between Model R and Model RM can be simplified as

$$\begin{aligned} \Pi _R^{RM} -\Pi _R^R =\frac{k\left( {a-bc_m } \right) \left( {2\Delta -\varpi } \right) H_1 }{4\left( {4k-b\Delta \varpi } \right) ^{2}\left( {32k-b\left( {2\Delta +\varpi } \right) ^{2}} \right) ^{2}},\nonumber \\ \end{aligned}$$
(47)

where

$$\begin{aligned}&H_1\! =\!\left\{ \! {\begin{array}{l} \displaystyle 256k^{2}\left( {2\Delta \!-\!3\varpi } \right) \!+\!4bk\left( {42\Delta \varpi ^{2}+17\varpi ^{3}-8\Delta ^{3}\!-\!20\varpi \Delta ^{2}} \right) \\ \displaystyle -b^{2}\varpi ^{2}\left( {2\Delta +\varpi } \right) \left( {\varpi ^{2}+8\varpi \Delta -4\Delta ^{2}} \right) \\ \end{array}} \right. ,\nonumber \\ \end{aligned}$$
(48)
$$\begin{aligned}&\Pi _M^{RM} -\Pi _M^R =\frac{k\left( {a-bc_m } \right) \left( {2\Delta -\varpi } \right) ^{2}}{2\left( {4k-b\Delta \varpi } \right) \left( {32k-b\left( {2\Delta +\varpi } \right) ^{2}} \right) }>0. \end{aligned}$$
(49)

When \(0<\varpi <{2\Delta }/3\), it can be shown that \(k>k_0 \), \(H_1 >0\),then \(\Pi _R^{RM} >\Pi _R^R \). When \({2\Delta }/3<\varpi <\Delta \), \(H_1 \) is quadratic function of \(k\) (a parabola as an inverted U-shape). It can be shown that the discriminant of the quadratic equation \((H_1 \left( k \right) =0)\) is positive. Therefore, two solutions for quadratic equation \(H_1 \left( k \right) =0\) exist, which are defined as \(k_2 \) and \(k_3 \). For \(k=k_0 \), since \(H_1 \left( k \right) <0\), both \(k_2 \) and \(k_3\) are greater than \(k_0\). Thus, when \({2\Delta }/3<\varpi <\Delta \), if \(k\in \left( {k_2 ,k_3 } \right) \),\(H_1 >0\),then \(\Pi _R^{RM} >\Pi _R^R \); and if \(k\in \left( {k_0 ,k_2 } \right) \cup \left( {k_3 ,\infty } \right) \), \(H_1 <0\), then \(\Pi _R^{RM} <\Pi _R^R \).

Proof of Proposition 5

The differences of optimum selling prices, collection rates and wholesale prices between Model M and Model MR are,

$$\begin{aligned} p^{MR}-p^{M}&= -\frac{b\Delta ^{4}\left( {a-bc_m } \right) }{4\left( {8k-b\Delta ^{2}} \right) \left( {16k-3b\Delta ^{2}} \right) }<0,\end{aligned}$$
(50)
$$\begin{aligned} \tau ^{MR}-\tau ^{M}&= \frac{b\Delta ^{3}\left( {a-bc_m } \right) }{\left( {8k-b\Delta ^{2}} \right) \left( {16k-3b\Delta ^{2}} \right) }>0,\end{aligned}$$
(51)
$$\begin{aligned} \omega ^{MR}-\omega ^{M}&= -\frac{b\Delta ^{4}\left( {a-bc_m } \right) }{2\left( {8k-b\Delta ^{2}} \right) \left( {16k-3b\Delta ^{2}} \right) }<0. \end{aligned}$$
(52)

Proof of Proposition 6

The differences of optimum profits of retailer and manufacturer between Model M and Model MR are,

$$\begin{aligned} \Pi _R^{MR} -\Pi _R^M =\frac{b\Delta ^{4}\left( {a-bc_m } \right) ^{2}}{16\left( {16k-3b\Delta ^{2}} \right) \left( {8k-b\Delta ^{2}} \right) ^{2}}>0,\end{aligned}$$
(53)
$$\begin{aligned} \Pi _M^{MR} -\Pi _M^M =\frac{b\Delta ^{4}\left( {a-bc_m } \right) ^{2}}{8\left( {16k-3b\Delta ^{2}} \right) \left( {8k-b\Delta ^{2}} \right) }>0. \end{aligned}$$
(54)

Then the relationships between profits increments and \(a,b,c_m ,k\) and \(\Delta \) can be concluded from Eqs. (53) and (54).

Proof of Proposition 7

The result of case (1) is obvious and we will focus on the proofs for cases (2) to (4). Differentiating \(z_M^{3PRM} \) with respect to \(k,b,\varpi \) and \(\Delta \) respectively,

$$\begin{aligned} \frac{ \partial z_M^{3PRM} }{\partial k}&= \frac{b\left( {2\Delta -\varpi } \right) \left( {2\Delta -3\varpi } \right) }{64k^{2}},\end{aligned}$$
(55)
$$\begin{aligned} \frac{ \partial z_M^{3PRM} }{\partial b}&= \frac{\left( {-2\Delta +3\varpi } \right) \left( {2\Delta -\varpi } \right) ^{2}}{64k\left( {2\Delta -\varpi } \right) },\end{aligned}$$
(56)
$$\begin{aligned} \frac{ \partial z_M^{3PRM} }{\partial \varpi }&= -\frac{128k\Delta -4b\Delta \left( {4\Delta ^{2}-7\Delta \varpi +4\varpi ^{2}} \right) +3b\varpi ^{3}}{k\left( {2\Delta -\varpi } \right) ^{2}},\nonumber \\ \end{aligned}$$
(57)
$$\begin{aligned} \frac{ \partial z_M^{3PRM} }{\partial \Delta }&= \frac{32k\varpi -b\Delta \left( {4\Delta ^{2}-8\Delta \varpi +5\varpi ^{2}} \right) +b\varpi ^{3}}{8k\left( {2\Delta -\varpi } \right) ^{2}}.\nonumber \\ \end{aligned}$$
(58)

The results for cases (2) and (3) can be obtained from Eqs. (55) and (56); and since \(k>k_0 \), it can be obtained that the formula (57) is negative. Let

$$\begin{aligned} {k}^{\prime }=\frac{b\Delta \left( {4\Delta ^{2}-8\Delta \varpi +5\varpi ^{2}} \right) -b\varpi ^{3}}{32k\varpi }. \end{aligned}$$
(59)

The result for Case (4) can be established.

Proof of Proposition 8

The differences of optimum selling prices, collection rates and wholesale prices between Model R and Model RM are,

$$\begin{aligned}&p^{3PRM}-p^{3P}\nonumber \\&\quad =-\frac{\left( {a-bc_m } \right) \left( {8k\left( {2\Delta -3\varpi } \right) ^{2}+b\varpi \left( {\Delta -\varpi } \right) \left( {2\Delta -\varpi } \right) ^{2}} \right) }{4\left( {4k-b\Delta \varpi +b\varpi ^{2}} \right) \left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) }<0,\nonumber \\ \end{aligned}$$
(60)
$$\begin{aligned}&\tau ^{3PRM}-\tau ^{3P}\nonumber \\&\quad =\frac{\left( {a-bc_m } \right) \left( {32k\left( {2\Delta -3\varpi } \right) +b\varpi \left( {2\Delta -\varpi } \right) \left( {5\varpi -2\Delta } \right) } \right) }{2\left( {4k-b\Delta \varpi +b\varpi ^{2}} \right) \left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) },\nonumber \\ \end{aligned}$$
(61)
$$\begin{aligned}&\omega ^{3PRM}-\omega ^{3P}\nonumber \\&\quad =-\frac{\left( {a-bc_m } \right) \left( {8k\left( {2\Delta -3\varpi } \right) ^{2}+b\varpi \left( {\Delta -\varpi } \right) \left( {2\Delta -\varpi } \right) ^{2}} \right) }{2\left( {4k-b\Delta \varpi +b\varpi ^{2}} \right) \left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) }<0.\nonumber \\ \end{aligned}$$
(62)

To analyse if the formula (61) is positive or negative, three situations are needed to be discussed:

  1. (1)

    when \(0<\varpi <{2\Delta }/5\), let

    $$\begin{aligned} k_4 =\frac{b\varpi \left( {2\Delta -\varpi } \right) \left( {2\Delta -5\varpi } \right) }{32\left( {2\Delta -3\varpi } \right) }>0. \end{aligned}$$
    (63)

    Since \(k>k_0 \), it can be shown that \(k_4 <k_0 \) when comparing \(k_0 \) with \(k_4 \). Thus formula (61) is positive when \(0<\varpi <{2\Delta }/5\); (2) when \({2\Delta }/5<\varpi <{2\Delta }/3\), both \(\left( {2\Delta -3\varpi } \right) \) and \(\left( {5\varpi -2\Delta } \right) \) are positive, then formula (61) is positive when \({2\Delta }/5<\varpi <{2\Delta }/3\); (3) when \({2\Delta }/3<\varpi <\Delta \), \(k_4 >0\) and let

    $$\begin{aligned} \frac{\Delta }{\varpi }=\sqrt{\frac{12\Delta -5\varpi }{31\varpi -18\Delta }}{\mathop {=}^{\Delta }} \eta . \end{aligned}$$
    (64)

    If \(\Delta /\varpi >\eta \), \(k_4 >k_0 \), formula (61) is positive when \(k_0 <k<k_4 \) and formula (61) is negative when \(k>k_4 \); and if \(\Delta /\varpi <\eta \), then \(k_4 <k_0 \), formula (61) is positive. To recap, the conclusion in (2) is obtained.

Proof of Proposition 9

The differences of optimum profits of the retailer and manufacturer between Model 3P and Model 3PRM are

$$\begin{aligned}&\!\!\!\! \Pi _R^{3PRM} -\Pi _R^{3P} \nonumber \\&{=}\frac{( {a{-}bc_m } )^{2}( {8k( {8k{+}b\varpi ^{2}{-}b\Delta \varpi } )( {2\Delta {-}3\varpi })^{2}{+}b^{2}\varpi ^{2}( {\Delta {-}\varpi } )^{2}( {2\Delta {-}\varpi } )^{2}} )}{16( {4k{-}b\Delta \varpi {+}b\varpi ^{2}} )^{2}( {64k{-}3b( {2\Delta {-}\varpi } )^{2}} )}>0,\nonumber \\ \end{aligned}$$
(65)
$$\begin{aligned}&\Pi _M^{3PRM} -\Pi _M^{3P} \nonumber \\&\quad =\frac{\left( {a-bc_m } \right) ^{2}\left( {8k\left( {2\Delta -3\varpi } \right) ^{2}+b\varpi \left( {\Delta -\varpi } \right) \left( {2\Delta -\varpi } \right) ^{2}} \right) }{8\left( {4k-b\Delta \varpi +b\varpi ^{2}} \right) \left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) }>0,\nonumber \\ \end{aligned}$$
(66)
$$\begin{aligned}&\Pi _{3P}^{3PRM} -\Pi _{3P}^{3P} \nonumber \\&\quad =-\frac{\varpi \left( {a-bc_m } \right) ^{2}\left( {k\left( {32k\left( {64k\left( {3\varpi -2\Delta } \right) +H_2 } \right) +H_4 } \right) +H_3 } \right) }{4\left( {4k-b\Delta \varpi +b\varpi ^{2}} \right) ^{2}\left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) ^{2}},\nonumber \\ \end{aligned}$$
(67)

where

$$\begin{aligned} \!\left\{ \!\! {\begin{array}{l} H_2 {=}b( {2\Delta {-}\varpi })( {( {2\Delta {+}\varpi } )^{2}{-}20\varpi ^{2}} ),H_3 {=}2b^{3}\varpi ^{2}( {\Delta {-}\varpi } )^{2}( {2\Delta {-}\varpi } )^{3} \\ H_4 =b^{2}\varpi \left( {2\Delta -\varpi } \right) \left( {4\Delta ^{2}\left( {27\varpi -2\Delta } \right) -\varpi ^{2}\left( {230\Delta -121\varpi } \right) } \right) \\ H_5 \left( k \right) =k\left( {32k\left( {64k\left( {3\varpi -2\Delta } \right) +H_2 } \right) +H_4 } \right) +H_3 \\ \end{array}} \right. .\nonumber \\ \end{aligned}$$
(68)

Hence, the results are established.

Proof of Proposition 10

The differences of optimum selling price of the retailer between Model RM and Model 3PRM is,

$$\begin{aligned}&p^{3PRM}-p^{RM}\nonumber \\&\quad =\frac{\left( {a-bc_m } \right) \left( {512\Delta \varpi k-b\left( {2\Delta +\varpi } \right) ^{2}\left( {2\Delta -\varpi } \right) ^{2}} \right) }{4\left( {32k-b\left( {2\Delta +\varpi } \right) ^{2}} \right) \left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) }.\nonumber \\ \end{aligned}$$
(69)

To analyse if the formula (69) is negative or positive, Let

$$\begin{aligned} k_5 =\frac{b\left( {2\Delta +\varpi } \right) ^{2}\left( {2\Delta -\varpi } \right) ^{2}}{512\Delta \varpi }. \end{aligned}$$
(70)

And then, \(k_0 \) minus \(k_5 \),

$$\begin{aligned} k_0 -k_5 =\frac{b\left( {144\varpi \Delta ^{3}+8\varpi ^{2}\Delta ^{2}-\varpi ^{4}-16\Delta ^{4}} \right) }{512\Delta \varpi }. \end{aligned}$$
(71)

Then let \(H_6 \left( \varpi \right) {\mathop {=}^{\Delta }} 144\varpi \Delta ^{3}+8\varpi ^{2}\Delta ^{2}-\varpi ^{4}-16\Delta ^{4}\), it is obvious that \(H_6 \left( {\varpi =0} \right) <0\) and \(H_6 \left( {\varpi =\Delta } \right) >0\). Notice that \(H_6 \left( \varpi \right) \) is an increasing function of \(\varpi \). There exists a unique \(\varpi _1 \in \left( {0,\Delta } \right) \) that makes \(H_6 \left( {\varpi _1 } \right) =0\). Therefore, when \(\varpi \in \left( {\varpi _1 ,\Delta } \right) \) and \(k_0 >k_5 \), \(p^{3PRM}>p^{RM}\) when \(\varpi \in \left( {0,\varpi _1 } \right) \) and \(k_0 <k_5 \),if \(k_0 <k<k_5 \), then \(p^{3PRM}<p^{RM}\); and if \(k>k_5 \), then \(p^{3PRM}>p^{RM}\). Then the differences of optimum selling price of the retailer between Model 3PRM and Model MR is,

$$\begin{aligned}&p^{3PRM}-p^{MR}\nonumber \\&\quad =\frac{8\varpi k\left( {a-bc_m } \right) \left( {4\Delta -\varpi } \right) }{\left( {16k-3b\Delta ^{2}} \right) \left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) }>0. \end{aligned}$$
(72)

The difference of optimum selling price of the retailer between Model MR and Model RM is,

$$\begin{aligned}&p^{MR}-p^{RM}\nonumber \\&\quad =\frac{\left( {a-bc_m } \right) \left( {16\varpi k\left( {4\Delta +\varpi } \right) -b\Delta ^{2}\left( {2\Delta +\varpi } \right) ^{2}} \right) }{4\left( {16k-3b\Delta ^{2}} \right) \left( {32k-b\left( {2\Delta +\varpi } \right) ^{2}} \right) }.\nonumber \\ \end{aligned}$$
(73)

Let

$$\begin{aligned} k_6 =\frac{b\Delta ^{2}\left( {2\Delta +\varpi } \right) ^{2}}{16\varpi \left( {4\Delta +\varpi } \right) }. \end{aligned}$$
(74)

It is obvious that when \(\varpi <{2\left( {3\sqrt{7}-7} \right) \Delta }/7{\mathop {=}^{\Delta }} \varpi _2 \), then \(k_6 >k_0 \); and if \(k>k_6 \), then \(p^{MR}>p^{RM}\); and if \(k<k_7 \), then \(p^{MR}<p^{RM}\). When \(\varpi >\varpi _2 \), then \(p^{MR}>p^{RM}\). Since \(H_6 \left( {\varpi _2 } \right) >0\), then \(\varpi _2 >\varpi _1\). Hence, we get the results in Proposition 10.

Proof of Proposition 11

The differences of optimum collection rates of the retailer between Model 3PRM and Model RM is,

$$\begin{aligned}&\tau ^{3PRM}-\tau ^{RM}\nonumber \\&\quad =\frac{2\left( {a-bc_m } \right) \left( {128\varpi k-b\left( {2\Delta +\varpi } \right) \left( {2\Delta -\varpi } \right) \left( {2\Delta -5\varpi } \right) } \right) }{\left( {32k-b\left( {2\Delta +\varpi } \right) ^{2}} \right) \left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) }.\nonumber \\ \end{aligned}$$
(75)

When \(\varpi >{2\Delta }/5\), formula (75) is positive, which means \(\tau ^{3PRM}>\tau ^{RM}\); and when \(\varpi <{2\Delta }/5\), let

$$\begin{aligned} k_7 =\frac{b\left( {2\Delta +\varpi } \right) \left( {2\Delta -\varpi } \right) \left( {2\Delta -5\varpi } \right) }{128\varpi }. \end{aligned}$$
(76)

Also, \(k_7 >0\), and then \(k_0 \) minus \(k_7 \),

$$\begin{aligned} k_0 -k_7 =\frac{b\left( {56\varpi \Delta ^{2}+2\varpi ^{2}\Delta -5\varpi ^{3}-8\Delta ^{3}} \right) }{128\varpi }{\mathop {=}^{\Delta }} H_7 \left( \varpi \right) .\nonumber \\ \end{aligned}$$
(77)

\(H_7 \left( \varpi \right) \) is an increasing function of \(\varpi \) within interval \(\left( {0,{2\Delta }/5} \right) \), which is also continuous with \(H_7 \left( {\varpi =0} \right) <0\) and \(H_7 \left( {\varpi ={2\Delta }/5} \right) <0\). Then there exists only one solution \(\varpi _3 \in \left( {0,{2\Delta }/5} \right) \) to make \(H_7 \left( {\varpi =\varpi _3 } \right) =0\), where \(\varpi _3 \) is the unique solution of equation \(H_7 \left( \varpi \right) =0\). Hence, when \(\varpi \in \left( {0,\varpi _3 } \right) \), \(k_0 <k_7 \), if \(k>k_7 \), then formula (75) will be positive, which means \(\tau ^{3PRM}>\tau ^{RM}\); and if \(k_0 <k<k_7 \), then formula (75) will be negative, which means \(\tau ^{3PRM}<\tau ^{RM}\). When \(\varpi \in \left( {\varpi _3 ,{2\Delta }/5} \right) \), \(k_0 >k_7 \), then formula (75) will be positive, which means \(\tau ^{3PRM}>\tau ^{RM}\).

Also, the differences of optimum collection rates of the retailer between Model 3PRM and Model MR is,

$$\begin{aligned} \tau ^{3PRM}-\tau ^{MR}=-\frac{2\varpi \left( {a-bc_m } \right) \left( {32k+6b\Delta ^{2}-3b\Delta \varpi } \right) }{\left( {16k-3b\Delta ^{2}} \right) \left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) }\!<\!0.\nonumber \\ \end{aligned}$$
(78)

Finally, the differences of optimum collection rates of the retailer between Model MR and Model RM is,

$$\begin{aligned} \tau ^{MR}-\tau ^{RM}=\frac{4\Delta \left( {a-bc_m } \right) ^{2}\left( {2\Delta +\varpi } \right) }{\left( {16k-3b\Delta ^{2}} \right) \left( {32k-b\left( {2\Delta +\varpi } \right) ^{2}} \right) }>0.\nonumber \\ \end{aligned}$$
(79)

Hence, we get the results in Proposition 11 from above analysis.

Proof of Proposition 12

The differences of optimum wholesale price between Model 3PRM and Model RM is,

$$\begin{aligned}&\omega ^{3PRM}-\omega ^{RM}\nonumber \\&\quad =\frac{\left( {a-bc_m } \right) \left( {-256\varpi ^{2}k+b\left( {2\Delta +\varpi } \right) \left( {11\varpi -2\Delta } \right) \left( {2\Delta -\varpi } \right) ^{2}} \right) }{2\left( {32k-b\left( {2\Delta +\varpi } \right) ^{2}} \right) \left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) }.\nonumber \\ \end{aligned}$$
(80)

It is obvious that when \(\varpi <{2\Delta }/{11}\), formula (80) will be negative, which means \(\omega ^{3PRM}<\omega ^{RM}\); and when \(\varpi >{2\Delta }/{11}\), let

$$\begin{aligned} k_8 =\frac{b\left( {2\Delta +\varpi } \right) \left( {11\varpi -2\Delta } \right) \left( {2\Delta -\varpi } \right) ^{2}}{256\varpi ^{2}}. \end{aligned}$$
(81)

then \(k_8 >0\),and when \(k=k_8 \), the formula (80) is equal to zero. And since \(k_8 <k_0 \),then formula (80) is negative, which means \(\omega ^{3PRM}<\omega ^{RM}\).

And the differences of optimum wholesale price between Model 3PRM and Model MR is,

$$\begin{aligned}&\!\!\! \omega ^{3PRM}-\omega ^{MR}\nonumber \\&=\frac{16\varpi k\left( {a-bc_m } \right) \left( {4\Delta -\varpi } \right) }{\left( {16k-3b\Delta ^{2}} \right) \left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) }>0. \end{aligned}$$
(82)

Finally, the differences of optimum wholesale price between Model MR and Model MR is

$$\begin{aligned}&\omega ^{MR}-\omega ^{RM}\nonumber \\&\quad =\frac{\left( {a-bc_m } \right) \left( {-16\varpi k\left( {4\Delta +3\varpi } \right) +b\Delta ^{2}\left( {2\Delta +\varpi } \right) \left( {11\varpi -2\Delta } \right) } \right) }{2\left( {16k-3b\Delta ^{2}} \right) \left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) }<0.\nonumber \\ \end{aligned}$$
(83)

Hence, we get the results in Proposition 12.

Proof of Proposition 13

The difference of the optimum profits of the retailer between Model 3PRM and Model RM is,

$$\begin{aligned}&\Pi _R^{3PRM} -\Pi _R^{RM} \nonumber \\&\quad =\frac{\left( {a-bc_m } \right) ^{2}\left( {-128\varpi k\left( {64k\left( {2\Delta -\varpi } \right) +H_8 } \right) +b^{2}\left( {2\Delta -\varpi } \right) ^{2}\left( {2\Delta +\varpi } \right) ^{4}} \right) }{16\left( {32k-b\left( {2\Delta +\varpi } \right) ^{2}} \right) ^{2}\left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) },\nonumber \\ \end{aligned}$$
(84)

where \(H_8 =b\left( {2\Delta +\varpi } \right) \left( {4\Delta ^{2}-16\Delta \varpi +3\varpi ^{2}} \right) \). For \(k>k_0 \), it is easy to prove that formula (84) is negative, which means \(\Pi _R^{3PRM} <\Pi _R^{RM} \). And the difference of the optimum profits of the retailer between Model 3PRM and Model MR is,

$$\begin{aligned} \Pi _R^{3PRM} -\Pi _R^{MR} =-\frac{4\varpi k\left( {a-bc_m } \right) ^{2}\left( {4\Delta -\varpi } \right) }{\left( {16k-3b\Delta ^{2}} \right) \left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) }<0.\nonumber \\ \end{aligned}$$
(85)

Finally, the difference of the optimum profits of the retailer between Model MR and Model RM is,

$$\begin{aligned}&\Pi _R^{MR} -\Pi _R^{RM} \nonumber \\&\quad =\frac{\left( {a-bc_m } \right) ^{2}\left( {16\varpi k\left( {64\varpi k-b\left( {2\Delta -\varpi } \right) \left( {2\Delta +\varpi } \right) \left( {8\Delta +\varpi } \right) } \right) +b^{2}\Delta ^{2}\left( {2\Delta +\varpi } \right) ^{4}} \right) }{16\left( {16k-3b\Delta ^{2}} \right) \left( {32k-b\left( {2\Delta +\varpi } \right) ^{2}} \right) ^{2}}.\nonumber \\ \end{aligned}$$
(86)

Let

$$\begin{aligned} H_9 \left( k \right)&= 16\varpi k\left( {64\varpi k\!-\!b\left( {2\Delta \!-\!\varpi } \right) \left( {2\Delta \! +\!\varpi } \right) \left( {8\Delta \!+\!\varpi } \right) } \right) \nonumber \\&+b^{2}\Delta ^{2}\left( {2\Delta +\varpi } \right) ^{4}. \end{aligned}$$
(87)

Since \(H_9 \left( k \right) \) is quadratic function of \(k\) with Parabola’s opening side down. When \(k=k_0 \), \(H_9 \left( k \right) <0\); and when \(k\rightarrow \infty \), \(H_9 \left( k \right) >0\). Thus there must exist a unique \(k_9 \in \left( {k_0 ,\infty } \right) \) to make \(H_9 \left( k \right) =0\). So, when \(k>k_9 \), the formula (86) will be positive and \(\Pi _R^{MR} >\Pi _R^{RM} \); and when \(k_0 <k<k_9 \), formula (86) will be negative and \(\Pi _R^{MR} <\Pi _R^{RM} \). Hence, we get the results in Proposition 13.

Proof of Proposition 14

The difference of the optimum profits of the manufacturer between Model 3PRM and Model RM is,

$$\begin{aligned}&\Pi _M^{3PRM} -\Pi _M^{RM} \nonumber \\&\quad =\frac{\left( {a-bc_m } \right) ^{2}\left( {-512\varpi \Delta k+b\left( {2\Delta -\varpi } \right) ^{2}\left( {2\Delta +\varpi } \right) ^{2}} \right) }{8\left( {32k-b\left( {2\Delta +\varpi } \right) ^{2}} \right) \left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) }.\nonumber \\ \end{aligned}$$
(88)

Let

$$\begin{aligned} k_{10} =\frac{b\left( {2\Delta -\varpi } \right) ^{2}\left( {2\Delta +\varpi } \right) ^{2}}{512\varpi \Delta }. \end{aligned}$$
(89)

When \(k>k_{10} \), the formula (88) will be negative, which means \(\Pi _M^{3PRM} \!<\!\Pi _M^{RM} \); and when \(k\!\!<\!\!k_{10} \), the formula

(88) will be positive, which means \(\Pi _M^{3PRM} >\Pi _M^{RM} \). The difference of the optimum profits of the manufacturer between Model 3PRM and Model MR is,

$$\begin{aligned}&\Pi _M^{3PRM} -\Pi _M^{MR} \nonumber \\&\quad =-\frac{4\varpi k\left( {a-bc_m } \right) ^{2}\left( {4\Delta -\varpi } \right) }{\left( {16k-3b\Delta ^{2}} \right) \left( {64k-3b\left( {2\Delta -\varpi } \right) ^{2}} \right) }<0. \end{aligned}$$
(90)

Finally, the difference of the optimum profits of the manufacturer between Model MR and Model RM is,

$$\begin{aligned}&\Pi _M^{MR} -\Pi _M^{RM} \nonumber \\&\quad =\frac{\left( {a-bc_m } \right) ^{2}\left( {-16\varpi k\left( {4\Delta +\varpi } \right) +b\Delta ^{2}\left( {2\Delta +\varpi } \right) ^{2}} \right) }{8\left( {16k-3b\Delta ^{2}} \right) \left( {32k-b\left( {2\Delta +\varpi } \right) ^{2}} \right) }.\nonumber \\ \end{aligned}$$
(91)

Let

$$\begin{aligned} k_{11} =\frac{b\Delta ^{2}\left( {2\Delta +\varpi } \right) ^{2}}{16\varpi \left( {4\Delta +\varpi } \right) }. \end{aligned}$$
(92)

It is obvious that \(k_{11} >k_{10} \). When \(k>k_{11} \), the formula (91) will be negative and \(\Pi _M^{MR} <\Pi _M^{RM} \) and when \(k<k_{11} \), the formula (91) will be positive and \(\Pi _M^{MR} >\Pi _M^{RM} \). Hence, we get the results in Proposition 14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Nie, J., Qu, T. et al. Choosing reverse channels under collection responsibility sharing in a closed-loop supply chain with re-manufacturing. J Intell Manuf 26, 387–402 (2015). https://doi.org/10.1007/s10845-013-0797-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-013-0797-z

Keywords

Navigation