Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A new paradigm of cloud-based predictive maintenance for intelligent manufacturing

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Advances in cloud computing reshape the manufacturing industry into dynamically scalable, on-demand service oriented, and highly distributed cost-efficient business model. However it also poses challenges such as reliability, availability, adaptability, and safety on machines and processes across spatial boundaries. To address these challenges, this paper investigates a cloud-based paradigm of predictive maintenance based on mobile agent to enable timely information acquisition, sharing and utilization for improved accuracy and reliability in fault diagnosis, remaining service life prediction, and maintenance scheduling. In the new paradigm, a low-cost cloud sensing and computing node is firstly developed with embedded Linux operating system, mobile agent middleware, and open source numerical libraries. Information sharing and interaction is achieved by mobile agent to distribute the analysis algorithms to cloud sensing and computing node to locally process data and share analysis results. Comparing to the commonly used client–server paradigm, the mobile agent approach enhances the system flexibility and adaptability, reduces raw data transmission, and instantaneously responds to dynamic changes of operations and tasks. Finally, the presented cloud-based paradigm of predictive maintenance is validated on a motor tested system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmad, A., Maynard, S. B., & Park, S. (2014). Information security strategies: Towards an organizational multi-strategy perspective. Journal of Intelligent Manufacturing, 25, 357–370.

    Article  Google Scholar 

  • Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., et al. (1999). LAPACK users’ guide. Philadelphia, PA: Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898719604.

    Book  Google Scholar 

  • Arab, A., Ismail, N., & Lee, L. S. (2013). Maintenance scheduling incorporating dynamics of production system and real-time information from workstations. Journal of Intelligent Manufacturing, 24, 695–705.

    Article  Google Scholar 

  • Archimede, B., Letouzey, A., Memon, M. A., & Xu, J. (2014). Towards a distributed multi-agent framework for shared resources scheduling. Journal of Intelligent Manufacturing, 25, 1077–1087.

    Article  Google Scholar 

  • Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., et al. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50–58.

    Article  Google Scholar 

  • Bandyopadhyay, S., & Bhattacharya, R. (2015). Finding optimum neighbor for routing based on multi-criteria, multi-agent and fuzzy approach. Journal of Intelligent Manufacturing, 26, 25–42.

    Article  Google Scholar 

  • Baumann, J., Hohl, F., Rothermel, K., Strasser, M., & Theilmann, W. (2002). MOLE: A mobile agent system. Software-Practice and Experience, 32(6), 575–603.

    Article  Google Scholar 

  • Bellifemine, F., Caire, G., Poggi, A., & Rimassa, G. (2008). JADE: A software framework for developing multi-agent applications, lessons learned. Information and Software Technology, 50(1–2), 10–21.

    Article  Google Scholar 

  • Bradshaw, J. M. (1997). An introduction to software agents. Cambridge: MIT Press.

    Google Scholar 

  • Chen, B., & Wang, J. (2008). Design of a multi-modal and high computation power wireless sensor node for structural health monitoring. In Proceedings of IEEE/ASME international conference on mechatronic and embedded systems and application, Beijing, China (pp. 420–425).

  • Chen, B., & Liu, W. (2010). Mobile agent computing paradigm for building a flexible structural health monitoring sensor network. Computer-Aided Civil and Infrastructure Engineering, 25, 504–516.

    Article  Google Scholar 

  • Chen, T., & Wang, Y. C. (2014). An agent-based fuzzy collaborative intelligence approach for precise and accurate semiconductor yield forecasting. IEEE Transactions on Fuzzy Systems, 22(1), 201–211.

    Article  Google Scholar 

  • Cheng H. H. (2006a). Mobile-C: A multi-agent platform for mobile C/C++ agents. http://www.mobilec.org

  • Cheng, H. H. (2006b). Ch: A C/C++ interpreter for script computing. C/C++ User’s Journal, 24(1), 6–12.

    Google Scholar 

  • Chou, Y. C., Ko, D., & Cheng, H. H. (2009). Mobile agent-based computational steering for distributed applications. Concurrency and Computation: Practice and Experience, 21(18), 2377–2399.

    Article  Google Scholar 

  • Chouikhi, H., Khatab, A., & Rezg, N. (2014). A condition-based maintenance policy for a production system under excessive environmental degradation. Journal of Intelligent Manufacturing, 25, 727–737.

    Article  Google Scholar 

  • Cucurull, J., Marti, R., Navarro-Arribas, G., Robles, S., Overeinder, B., & Borrell, J. (2009). Agent mobility architecture based on IEEE–FIPA standards. Computer Communications, 32(4), 712–729.

    Article  Google Scholar 

  • Distefano, S., Merlino, G., & Puliafito, A. (2014). A utility paradigm for IoT: The sensing cloud. Pervasive and Mobile Computing. doi:10.1016/j.pmcj.2014.09.006.

  • Gray, R. S., Cybenko, G., Kotz, D., Peterson, R. A., & Rus, D. (2002). D’Agents: Applications and performance of a mobile-agent system. Software-Practice and Experience, 32(6), 543–573.

    Article  Google Scholar 

  • Hadim, S., & Mohamed, N. (2006). Middleware for wireless sensor networks: A survey. In Proceedings of first international conference on communication system software and middleware, New Delhi, India (pp. 1–7). doi:10.1109/COMSWA.2006.1665174.

  • Hsieh, F. S., & Lin, J. B. (2014). Context-aware workflow management for virtual enterprises based on coordination of agents. Journal of Intelligent Manufacturing, 25, 393–412.

    Article  Google Scholar 

  • Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483–1510.

    Article  Google Scholar 

  • Johnansen, D., Lauvset, K. J., van Renesse, R., Schneider, F. B., Sudmann, N. P., & Jacobsen, K. (2002). A TACOMA retrospective. Software-Practice and Experience, 32(6), 605–619.

    Article  Google Scholar 

  • Khan, A. N., Kiah, M. L. M., Khan, S. U., & Madani, S. A. (2013). Towards secure mobile cloud computing: A survey. Future Generation Computer Systems, 29, 1278–1299.

    Article  Google Scholar 

  • Lange, D. B., & Oshima, M. (1998). Programming and deploying java mobile agents with aglets. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Larry, T. (1995). Machinery oil analysis: Methods, automation and benefits (pp. 1–383). Park Ridge: Society of Tribologists and Lubrication Engineers.

    Google Scholar 

  • Monostori, L., Vancza, J., & Kumara, S. R. T. (2006). Agent-based systems for manufacturing. CIRP Annals-Manufacturing Systems, 55(2), 697–720.

    Article  Google Scholar 

  • Peine, H. (2002). Application and programming experience with the Ara mobile agent system. Software-Practice and Experience, 32(6), 515–541.

    Article  Google Scholar 

  • Peng, Y., Dong, M., & Zuo, M. J. (2010). Current status of machine prognostics in condition-based maintenance: A review. International Journal of Advanced Manufacturing Technology, 50, 297–313.

    Article  Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1992). Numerical recipes in C: The art of scientific computing. Cambridge: Cambridge University Press.

    Google Scholar 

  • Singh, A., & Malhotra, M. (2012). Analysis for exploring scope of mobile agents in cloud computing. International Journal of Advancements in Technology, 3(3), 172–183.

    Google Scholar 

  • Teti, R., Jemielniak, K., O’Donnell, G., & Dornfeld, D. (2010). Advanced monitoring of machining operations. CIRP Annals-Manufacturing Technology, 59(2), 717–739.

    Article  Google Scholar 

  • Tripathi, A., Ahmed, T., Pathak, S., & Carney, M. (2002). Paradigms for mobile agent based active monitoring of network systems. In Proceedings of 2002 IEEE/IFIP network operations and management symposium (pp. 65–78).

  • Vapnik, V. N. (1999). The nature of statistical learning theory. New York: Springer.

    Google Scholar 

  • Venters, W., & Whitley, E. A. (2012). A critical review of cloud computing: Researching desires and realities. Journal of Information Technology, 27, 179–197.

    Article  Google Scholar 

  • Wang, L., Gao R. X., & Ragai I. (2014). An integrated cyber-physical system for cloud manufacturing. In Proceedings of the ASME international manufacturing science and engineering conference, MSEC2014-4171 (pp. 1–8).

  • Wang, J., Wang, P., & Gao R. X. (2013). Tool life prediction for sustainable manufacturing. In Proceedings of 11th global conference on sustainable manufacturing, Berlin, Germany (pp. 230–234).

  • Wang, J., Liu, S., Gao, R. X., & Yan, R. (2012). Current envelope analysis for defect identification and diagnosis in induction motors. Journal of Manufacturing Systems, 31(4), 380–387.

    Article  Google Scholar 

  • Wang, L. (2013). Machine availability monitoring and machining process planning towards cloud manufacturing. CIRP Journal of Manufacturing Science and Technology, 6, 263–273.

    Article  Google Scholar 

  • Wang, S., Liu, Z., Sun, Q., Zou, H., & Yang, F. (2014). Towards an accurate evaluation of quality of cloud service in service-oriented cloud computing. Journal of Intelligent Manufacturing, 25, 283–291.

    Article  Google Scholar 

  • Widodo, A., & Yang, B. S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing, 21, 2560–2574.

    Article  Google Scholar 

  • Wong, D., Paciorek, N., Walsh, T., DiCelie, J., Young, M., & Peet, B. (1997). Concordia: An infrastructure for collaborating mobile agents. In Proceedings of the first international workshop on mobile agents (MA’97), Lecture Notes in Computer Science (vol. 1219, pp. 86–97). Berlin: Springer.

  • Wu, D., Greer, M. J., Rosen, D. W., & Schaefer, D. (2013). Cloud manufacturing: Strategic vision and state-of-the-art. Journal of Manufacturing Systems, 32, 564–579.

    Article  Google Scholar 

  • Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and Computer-Integrated Manufacturing, 28, 75–86.

    Article  Google Scholar 

  • Yang, Y., Gao, R. X., Fan, Z., Wang J., & Wang L., (2014). Cloud-based prognosis: Perspective and challenge. In Proceedings of the ASME international manufacturing science and engineering conference, Detroit, Michigan, USA, MSEC2014-4155 (pp. 1–6).

  • Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: State-of-the-art and research challenges. Journal of Internet Services and Applications, 1(1), 7–18.

    Article  Google Scholar 

  • Zhang, Z., Wang, Y., & Wang, K. (2013). Fault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural network. Journal of Intelligent Manufacturing, 24, 1213–1227.

    Article  Google Scholar 

Download references

Acknowledgments

This research acknowledges the financial support provided by Science Foundation of China University of Petroleum, Beijing (No. 2462014YJRC039) and National Science foundation of China (No. 51204196). Support on design of cloud sensing and computing node in Michigan Technological University is appreciated. The valuable comments from anonymous reviewers are greatly acknowledged to help improve the paper’s quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, L., Duan, L. et al. A new paradigm of cloud-based predictive maintenance for intelligent manufacturing. J Intell Manuf 28, 1125–1137 (2017). https://doi.org/10.1007/s10845-015-1066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1066-0

Keywords

Navigation