Abstract
An optimal recovery based neural-network Super Resolution algorithm is developed. The proposed method is computationally less expensive and outputs images with high subjective quality, compared with previous neural-network or optimal recovery algorithms. It is evaluated on classical SR test images with both generic and specialized training sets, and compared with other state-of-the-art methods. Results show that our algorithm is among the state-of-the-art, both in quality and efficiency.
Similar content being viewed by others
References
Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Proc. Mag. 20(3), 21–36 (2003)
Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. Patt. Anal. Mach. Intell. 24(9), 1167–1183 (2002)
Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: Advances and challenges in super-resolution. Int. J. Imag. Sys. Technol. 14(2), 47–57 (2004)
Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comp. Vis. 40(1), 25–47 (2000)
Qiu, G.: Inter-resolution look-up table for improved spatial magnification of images. J. Vis. Commun. Image Represent. 11, 360–373 (2000)
Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comp. Graph. Appl. 22(2), 56–65 (2002)
Freeman, W.T., Pasztor, E.C.: Learning to estimate scenes from images. In: Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II, pp. 775–781 (1998)
Sun, J., Zheng, N., Tao, H., Shum, H.: Image hallucination with primal sketch priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. II, pp. 729–736 (2003)
Freeman, W.T., Pasztor, E.C.: Markov networks for super-resolution. In: Proceedings of the 34th Annual Conference on Information Sciences and Systems (2000)
Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image Analogies. In: Proceedings of SIGGRAPH 2001, pp. 327–340 (2001)
Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of the IEEE International Conference on Computer Vision, vol. I, pp. 275–282 (2004)
Keys, R.G.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acous., Speech and Signal Proc 29, 1153–1160 (1981)
Ramstad, T., Wang, Y., Mitra, S.K.: An efficient image interpolation scheme using hybrid IIR Nyquist filters. Opt. Eng. 31, 1277–1283 (1992)
Chan, A.K., Chui, C.K., Zha, J., Liu, Q.: Local cardinal spline interpolation and its application to image processing. In: Proceedings of the Conference on Curves and Surfaces in Computer Vision and Graphics II, SPIE Proceedings, vol. 1610, pp. 272–283 (1991)
Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: part I-theory. IEEE Trans. Sign. Proc. 41, 821–833 (1993)
Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: part II-efficient design and applications. IEEE Trans. Sign. Proc. 41, 834–848 (1993)
Thurnhofer, S., Mitra, S.: Edge-enhanced image zooming. Opt. Eng. 35(7), 1862–1870 (1996)
Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Trans. Image Proc. 10(10), 1521–1527 (2001)
Chan, S.C., Ho, K.L., Kok, C.W.: Interpolation of 2-D signal by subsequence FFT. IEEE Trans. Circuits Sys. Part II 40, 115–118 (1993)
Kim, S.P., Su, W.: Direct image resampling using block transform coefficients. Sign. Proc.: Image Commun. 5, 259–272 (1993)
Stasinski, R., Konrad, J.: POCS-based image reconstruction from irregularly-spaced samples. In: Proceedings of the 7th IEEE International Conference on Image Processing Vol. 2, pp. 315–318 (2000)
Stasinski, R., Konrad, J.: Improved POCS-based image reconstruction from irregularly-spaced samples. In: Proceedings of the 7th European Signal Processing Conference, Vol. 2 pp. 461–464 (2002)
Chen, G., de Figueiredo, R.J.P.: A unified approach to optimal image interpolation problems based on linear partial differential equation models. IEEE Trans. Image Proc. 2, 41–49 (1993)
Karayiannis, N.B., Venetsanopoulos, A.N.: Image interpolation based on variational principles. Sign. Proc. 25, 259–288 (1991)
Muresan, D.D., Parks, T.W.: Optimal recovery approach to image interpolation. In: Proceedings of the 8th IEEE International Conference on Image Processing, vol. III, pp. 7–10 (2001)
Shenoy, R.G., Parks, T.W.: An optimal recovery approach to interpolation. IEEE Trans. Sign. Proc. 40(8), 1987–1996 (1992)
Muresan, D.D., Parks, T.W.: Adaptively quadratic (AQua) image interpolation. IEEE Trans. Image Proc. 13(5), 690–698 (2004)
Muresan, D.D., Parks, T.W.: Demosaicing using optimal recovery. IEEE Trans. Image Proc. 14(2), 267–278 (2005)
Swanston, D.J., Bishop, J.M., Mitchell, R.J.: simple adaptive momentum: New algorithm for training multilayer perceptrons. Elect. Lett. 30, 1498–1500 (1994)
Scalero, R.S., Tepedelenlioglu, N.: A fast new algorithm for training feedforward neural networks. IEEE Trans. Sign. Proc. 40, 203–210 (1992)
Plaziac, N.: Image interpolation using neural networks. IEEE Trans. Image Proc. 8, 1647–1651 (1999)
Go, J., Sohn, K., Lee, C.: Interpolation using neural networks for digital still cameras. IEEE Trans. Consum. Elect. 46(3), 610–616 (2000)
Tsai, R.Y., Huang, T.S.: Multiframe image restoration and registration. Adv. Comp. Vis. Image Proc. 1, 317–339 (1984)
Anderws, H.C., Hunt, B.R.: Digital Image Restoration. Prentice-Hall NJ, (1977)
Moller, A.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6(4), 525–533 (1993)
Michelli, C.A., Rivlin, T.J.: Optimal Estimation in Approximation Theory, Plenum NY, (1976)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, Y., Long, Y. Super-resolution using neural networks based on the optimal recovery theory. J Comput Electron 5, 275–281 (2006). https://doi.org/10.1007/s10825-006-0145-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-006-0145-z