Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Detailed potential of mean force studies on host–guest systems from the SAMPL6 challenge

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Accurately predicting receptor–ligand binding free energies is one of the holy grails of computational chemistry with many applications in chemistry and biology. Many successes have been reported, but issues relating to sampling and force field accuracy remain significant issues affecting our ability to reliably calculate binding free energies. In order to explore these issues in more detail we have examined a series of small host–guest complexes from the SAMPL6 blind challenge, namely octa-acids (OAs)–guest complexes and Curcurbit[8]uril (CB8)–guest complexes. Specifically, potential of mean force studies using umbrella sampling combined with the weighted histogram method were carried out on both systems with both known and unknown binding affinities. We find that using standard force fields and straightforward simulation protocols we are able to obtain satisfactory results, but that simply scaling our results allows us to significantly improve our predictive ability for the unknown test sets: the overall RMSD of the binding free energy versus experiment is reduced from 5.59 to 2.36 kcal/mol; for the CB8 test system, the RMSD goes from 8.04 to 3.51 kcal/mol, while for the OAs test system, the RSMD goes from 2.89 to 0.95 kcal/mol. The scaling approach was inspired by studies on structurally related known benchmark sets: by simply scaling, the RMSD was reduced from 6.23 to 1.19 kcal/mol and from 2.96 to 0.62 kcal/mol for the CB8 benchmark system and the OA benchmark system, respectively. We find this scaling procedure to correct absolute binding affinities to be highly effective especially when working across a “congeneric” series with similar charge states. It is less successful when applied to mixed ligands with varied charges and chemical characteristics, but improvement is still realized in the present case. This approach suggests that there are large systematic errors in absolute binding free energy calculations that can be straightforwardly accounted for using a scaling procedure. Random errors are still an issue, but near chemical accuracy can be obtained using the present strategy in select cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS (2011) Alchemical free energy methods for drug discovery: progress and challenges. Curr Opin Struct Biol 21(2):150–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wlodawer A (2002) Rational approach to AIDS drug design through structural biology. Annu Rev Med 53:595–614

    Article  CAS  PubMed  Google Scholar 

  3. Williams JA, Bauman J, Cai H, Conlon K, Hansel S, Hurst S, Sadagopan N, Tugnait M, Zhang L, Sahi J (2005) In vitro ADME phenotyping in drug discovery: current challenges and future solutions. Curr Opin Drug Discov Devel 8(1):78–88

    CAS  PubMed  Google Scholar 

  4. Szakacs G, Varadi A, Ozvegy-Laczka C, Sarkadi B (2008) The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov Today 13:9–10 379 – 93.

    Article  CAS  Google Scholar 

  5. Ekins S, Nikolsky Y, Nikolskaya T (2005) Techniques: application of systems biology to absorption, distribution, metabolism, excretion and toxicity. Trends Pharmacol Sci 26(4):202–209

    Article  CAS  PubMed  Google Scholar 

  6. Caldwell J, Gardner I, Swales N (1995) An introduction to drug disposition: the basic principles of absorption, distribution, metabolism, and excretion. Toxicol Pathol 23(2):102–114

    Article  CAS  PubMed  Google Scholar 

  7. Balani SK, Miwa GT, Gan LS, Wu JT, Lee FW (2005) Strategy of utilizing in vitro and in vivo ADME tools for lead optimization and drug candidate selection. Curr Top Med Chem 5(11):1033–1038

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Wu YJ, Deng YQ, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, Farid R, Lin T, Mobley DL, Jorgensen WL, Berne BJ, Friesner RA, Abel R (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137(7); 2695–2703

    Article  CAS  PubMed  Google Scholar 

  9. Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  10. Mccammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267(5612):585–590

    Article  CAS  PubMed  Google Scholar 

  11. Merz KM, Kollman PA (1989) Free-energy perturbation simulations of the inhibition of thermolysin—prediction of the free-energy of binding of a new inhibitor. J Am Chem Soc 111(15):5649–5658

    Article  CAS  Google Scholar 

  12. Mobley DL, Gilson MK (2017) Predicting binding free energies: frontiers and benchmarks. Annu Rev Biophys 46:531–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mobley DL, Klimovich PV (2012) Perspective: Alchemical free energy calculations for drug discovery. J Chem Phys 137:230901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts Chem Res 33(12):889–897

    Article  CAS  Google Scholar 

  15. Kuhn B, Kollman PA (2000) Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 43(20):3786–3791

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Liu ZH, Wang RX (2010) Test MM-PB/SA on true conformational ensembles of protein-ligand complexes. J Chem Inf Model 50(9):1682–1692

    Article  CAS  PubMed  Google Scholar 

  17. Rastelli G, Del Rio A, Degliesposti G, Sgobba M (2010) Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem 31(4):797–810

    CAS  PubMed  Google Scholar 

  18. Lazaridis T, Masunov A, Gandolfo F (2002) Contributions to the binding free energy of ligands to avidin and streptavidin. Proteins 47(2):194–208

    Article  CAS  PubMed  Google Scholar 

  19. Luo H, Sharp K (2002) On the calculation of absolute macromolecular binding free energies. Proc Natl Acad Sci USA 99(16):10399–10404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luo R, Gilson MK (2000) Synthetic adenine receptors: direct calculation of binding affinity and entropy. J Am Chem Soc 122(12):2934–2937

    Article  CAS  Google Scholar 

  21. Srinivasan J, Miller J, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of RNA hairpin loops and helices. J Biomol Struct Dyn 16(3):671–682

    Article  CAS  PubMed  Google Scholar 

  22. Vorobjev YN, Hermans J (1999) ES/IS: estimation of conformational free energy by combining dynamics simulations with explicit solvent with an implicit solvent continuum model. Biophys Chem 78(1–2):195–205

    Article  CAS  PubMed  Google Scholar 

  23. Swanson JM, Henchman RH, McCammon JA (2004) Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys J 86(1 Pt 1):67–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guitierrez-de-Teran H, Aqvist J (2012) Linear interaction energy: method and applications in drug design. Methods Mol Biol 819:305–323

    Article  CAS  Google Scholar 

  25. Bennett CH (1976) Efficient estimation of free-energy differences from monte-carlo data. J Comput Phys 22(2):245–268

    Article  Google Scholar 

  26. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3(5):300–313

    Article  CAS  Google Scholar 

  27. Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129:(12)

    Google Scholar 

  28. Zwanzig RW (1954) High-temperature equation of state by a perturbation method.1. Nonpolar gases. J Chem Phys 22(8):1420–1426

    Article  CAS  Google Scholar 

  29. Zwanzig RW, Kirkwood JG, Oppenheim I, Alder BJ (1954) Statistical mechanical theory of transport processes.7. The coefficient of thermal conductivity of monatomic liquids. J Chem Phys 22(5):783–790

    Article  CAS  Google Scholar 

  30. Kong XJ, Brooks CL (1996) lambda-dynamics: a new approach to free energy calculations. J Chem Phys 105(6):2414–2423

    Article  Google Scholar 

  31. Lee FS, Chu ZT, Bolger MB, Warshel A (1992) Calculations of antibody antigen interactions—microscopic and semimicroscopic evaluation of the free-energies of binding of phosphorylcholine analogs to Mcpc603. Protein Eng 5(3):215–228

    Article  CAS  PubMed  Google Scholar 

  32. Bhakat S, Soderhjelm P (2017) Resolving the problem of trapped water in binding cavities: prediction of host-guest binding free energies in the SAMPL5 challenge by funnel metadynamics. J Comput Aid Mol Des 31(1):119–132

    Article  CAS  Google Scholar 

  33. Doudou S, Burton NA, Henchman RH (2009) Standard free energy of binding from a one-dimensional potential of mean force. J Chem Theory Comput 5(4):909–918

    Article  CAS  PubMed  Google Scholar 

  34. Henriksen NM, Fenley AT, Gilson MK (2015) Computational calorimetry: high-precision calculation of host-guest binding thermodynamics. J Chem Theory Comput 11(9):4377–4394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hsiao YW, Soderhjelm P (2014) Prediction of SAMPL4 host-guest binding affinities using funnel metadynamics. J Comput Aid Mol Des 28(4):443–454

    Article  CAS  Google Scholar 

  36. Lee MS, Olson MA (2006) Calculation of absolute protein-ligand binding affinity using path and endpoint approaches. Biophys J 90(3):864–877

    Article  CAS  PubMed  Google Scholar 

  37. Velez-Vega C, Gilson MK (2013) Overcoming dissipation in the calculation of standard binding free energies by ligand extraction. J Comput Chem 34(27):2360–2371

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ytreberg FM (2009) Absolute FKBP binding affinities obtained via nonequilibrium unbinding simulations. J Chem Phys 130(16):164906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ucisik MN, Zheng Z, Faver JC, Merz KM (2014) Bringing clarity to the prediction of protein-ligand binding free energies via “blurring”. J Chem Theory Comput 10(3):1314–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Woo HJ, Roux B (2005) Calculation of absolute protein-ligand binding free energy from computer simulations. Proc Natl Acad Sci USA 102(19):6825–6830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aqvist J, Luzhkov VB, Brandsdal BO (2002) Ligand binding affinities from MD simulations. Accounts Chem Res 35(6):358–365

    Article  CAS  Google Scholar 

  42. Bansal N, Zheng Z, Cerutti DS, Merz KM (2017) On the fly estimation of host-guest binding free energies using the movable type method: participation in the SAMPL5 blind challenge. J Comput Aid Mol Des 31(1):47–60

    Article  CAS  Google Scholar 

  43. Ding X, Vilseck JZ, Hayes RL, Brooks CL 3rd (2017) Gibbs sampler-based lambda-dynamics and rao-blackwell estimator for alchemical free energy calculation. J Chem Theory Comput 13(6):2501–2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Armacost KA, Goh GB, Brooks CL 3rd (2015) Biasing potential replica exchange multisite lambda-dynamics for efficient free energy calculations. J Chem Theory Comput 11(3):1267–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Knight JL, Brooks CL 3rd (2009) Lambda-dynamics free energy simulation methods. J Comput Chem 30(11):1692–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kollman P (1993) Free-energy calculations—applications to chemical and biochemical phenomena. Chem Rev 93(7):2395–2417

    Article  CAS  Google Scholar 

  47. Luccarelli J, Michel J, Tirado-Rives J, Jorgensen WL (2010) Effects of water placement on predictions of binding affinities for p38 alpha MAP kinase inhibitors. J Chem Theory Comput 6(12):3850–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steinbrecher T, Case DA, Labahn A (2006) A multistep approach to structure-based drug design: studying ligand binding at the human neutrophil elastase. J Med Chem 49(6):1837–1844

    Article  CAS  PubMed  Google Scholar 

  49. Stembrecher T, Hrenn A, Dormann KL, Merfort I, Labahn A (2008) Bornyl (3,4,5-trihydroxy)-cinnamate—an optimized human neutrophil elastase inhibitor designed by free energy calculations. Bioorgan Med Chem 16(5):2385–2390

    Article  CAS  Google Scholar 

  50. Lawrenz M, Wereszczynski J, Amaro R, Walker R, Roitberg A, McCammon JA (2010) Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy. Proteins-Struct Funct Bioinform 78(11):2523–2532

    Article  CAS  Google Scholar 

  51. Reddy MR, Erion MD (2001) Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach. J Am Chem Soc 123(26):6246–6252

    Article  CAS  PubMed  Google Scholar 

  52. Palma PN, Bonifacio MJ, Loureiro AI, Soares-da-Silva P (2012) Computation of the binding affinities of catechol-O-methyltransferase inhibitors: multisubstate relative free energy calculations. J Comput Chem 33(9):970–986

    Article  CAS  PubMed  Google Scholar 

  53. Erion MD, Dang Q, Reddy MR, Kasibhatla SR, Huang J, Lipscomb WN, van Poelje PD (2007) Structure-guided design of AMP mimics that inhibit fructose-1,6-bisphosphatase with high affinity and specificity. J Am Chem Soc 129(50):15480–15490

    Article  CAS  PubMed  Google Scholar 

  54. Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem B 107(35):9535–9551

    Article  CAS  Google Scholar 

  55. Helms V, Wade RC (1998) Computational alchemy to calculate absolute protein-ligand binding free energy. J Am Chem Soc 120(12):2710–2713

    Article  CAS  Google Scholar 

  56. Hermans J, Shankar S (1986) The free-energy of Xenon binding to myoglobin from molecular-dynamics simulation. Israel J Chem 27(2):225–227

    Article  CAS  Google Scholar 

  57. Hermans J, Wang L (1997) Inclusion of loss of translational and rotational freedom in theoretical estimates of free energies of binding. Application to a complex of benzene and mutant T4 lysozyme. J Am Chem Soc 119(11):2707–2714

    Article  CAS  Google Scholar 

  58. Roux B, Nina M, Pomes R, Smith JC (1996) Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study. Biophys J 71(2):670–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heinzelmann G, Chen PC, Kuyucak S (2014) Computation of standard binding free energies of polar and charged ligands to the glutamate receptor GluA2. J Phys Chem B 118(7):1813–1824

    Article  CAS  PubMed  Google Scholar 

  60. Wang JY, Deng YQ, Roux B (2006) Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Biophys J 91(8):2798–2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Deng Y, Roux B (2006) Calculation of standard binding free energies: aromatic molecules in the T4 Lysozyme L99A mutant. J Chem Theory Comput 2(5):1255–1273

    Article  CAS  PubMed  Google Scholar 

  62. Torrie GM, Valleau JP (1974) Monte-Carlo free-energy estimates using non-boltzmann sampling—application to subcritical Lennard-Jones fluid. Chem Phys Lett 28(4):578–581

    Article  CAS  Google Scholar 

  63. Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78(14):2690–2693

    Article  CAS  Google Scholar 

  64. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99(20):12562–12566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bastug T, Chen PC, Patra SM, Kuyucak S (2008) Potential of mean force calculations of ligand binding to ion channels from Jarzynski’s equality and umbrella sampling. J Chem Phys 128:(15)

    Google Scholar 

  66. Cuendet MA, Michielin O (2008) Protein-protein interaction investigated by steered molecular dynamics: the TCR-pMHC complex. Biophys J 95(8):3575–3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grater F, de Groot BL, Jiang HL, Grubmuller H (2006) Ligand-release pathways in the pheromone-binding protein of Bombyx mori. Structure 14(10):1567–1576

    Article  PubMed  CAS  Google Scholar 

  68. Vashisth H, Abrams CF (2008) Ligand escape pathways and (Un)binding free energy calculations for the hexameric insulin-phenol complex. Biophys J 95(9):4193–4204

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang DQ, Gullingsrud J, McCammon JA (2006) Potentials of mean force for acetylcholine unbinding from the alpha7 nicotinic acetylcholine receptor ligand-binding domain. J Am Chem Soc 128(13):4493–4493

    Article  CAS  Google Scholar 

  70. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. 1. The method. J Comput Chem 13(8):1011–1021

    Article  CAS  Google Scholar 

  71. Torrie GM, Valleau JP (1977) Monte-Carlo study of a phase-separating liquid-mixture by umbrella sampling. J Chem Phys 66(4):1402–1408

    Article  CAS  Google Scholar 

  72. Torrie GM, Valleau JP (1977) Non-physical sampling distributions in Monte-Carlo free-energy estimation—umbrella sampling. J Comput Phys 23(2):187–199

    Article  Google Scholar 

  73. Kosztin D, Izrailev S, Schulten K (1999) Unbinding of retinoic acid from its receptor studied by steered molecular dynamics. Biophys J 76(1):188–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1995) Multidimensional free-energy calculations using the weighted histogram analysis method. J Comput Chem 16(11):1339–1350

    Article  CAS  Google Scholar 

  75. Shoup D, Szabo A (1982) Role of diffusion in ligand-binding to macromolecules and cell-bound receptors. Biophys J 40(1):33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rocklin GJ, Mobley DL, Dill KA, Hunenberger PH (2013) Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. J Chem Phys 139(18):11B606_1

    Article  CAS  Google Scholar 

  77. Mobley DL, Chodera JD, Dill KA (2006) On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. J Chem Phys 125(8):084902

    Article  PubMed  CAS  Google Scholar 

  78. Truong DT, Li MS (2018) Probing the binding affinity by Jarzynski’s nonequilibrium binding free energy and rupture time. J Phys Chem B 122(17):4693–4699

    Article  CAS  Google Scholar 

  79. Velez-Vega C, Gilson MK (2012) Force and stress along simulated dissociation pathways of cucurbituril-guest systems. J Chem Theory Comput 8(3):966–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Muddana HS, Fenley AT, Mobley DL, Gilson MK (2014) The SAMPL4 host-guest blind prediction challenge: an overview. J Comput Aid Mol Des 28(4):305–317

    Article  CAS  Google Scholar 

  81. Yin J, Henriksen NM, Slochower DR, Shirts MR, Chiu MW, Mobley DL, Gilson MK (2017) Overview of the SAMPL5 host-guest challenge: are we doing better? J Comput Aid Mol Des 31(1):1–19

    Article  CAS  Google Scholar 

  82. Zheng L, Yang W (2012) Practically efficient and robust free energy calculations: double-integration orthogonal space tempering. J Chem Theory Comput 8(3):810–823

    Article  CAS  PubMed  Google Scholar 

  83. Tofoleanu F, Lee J, Pickard FC, Konig G, Huang J, Baek M, Seok C, Brooks BR (2017) Absolute binding free energies for octa-acids and guests in SAMPL5 Evaluating binding free energies for octa-acid and guest complexes in the SAMPL5 blind challenge. J Comput Aid Mol Des 31(1):107–118

    Article  CAS  Google Scholar 

  84. Yin J, Henriksen NM, Slochower DR, Gilson MK (2017) The SAMPL5 host-guest challenge: computing binding free energies and enthalpies from explicit solvent simulations by the attach-pull-release (APR) method. J Comput Aid Mol Des 31(1):133–145

    Article  CAS  Google Scholar 

  85. Bosisio S, Mey ASJS, Michel J (2017) Blinded predictions of host-guest standard free energies of binding in the SAMPL5 challenge. J Comput Aid Mol Des 31(1):61–70

    Article  CAS  Google Scholar 

  86. Hamelberg D, McCammon JA (2004) Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method. J Am Chem Soc 126(24):7683–7689

    Article  CAS  PubMed  Google Scholar 

  87. Murkli S, McNeill JN, Isaacs L. Cucurbit[8]uril Guest Complexes: Blinded Dataset for the SAMPL6 Challenge. Supramolecular Chemistry. submitted; XX.

  88. Vazquez J, Remon P, Dsouza RN, Lazar AI, Arteaga JF, Nau WM, Pischel U (2014) A simple assay for quality binders to Cucurbiturils. Chem-Eur J 20(32):9897–9901

    Article  CAS  PubMed  Google Scholar 

  89. Gibb CLD, Gibb BC (2014) Binding of cyclic carboxylates to octa-acid deep-cavity cavitand. J Comput Aid Mol Des 28(4):319–325

    Article  CAS  Google Scholar 

  90. Muddana HS, Varnado CD, Bielawski CW, Urbach AR, Isaacs L, Geballe MT, Gilson MK (2012) Blind prediction of host-guest binding affinities: a new SAMPL3 challenge. J Comput Aid Mol Des 26(5):475–487

    Article  CAS  Google Scholar 

  91. Biedermann F, Scherman OA (2012) Cucurbit[8]uril mediated donor-acceptor ternary complexes: a model system for studying charge-transfer interactions. J Phys Chem B 116(9):2842–2849

    Article  CAS  PubMed  Google Scholar 

  92. Gan HY, Benjamin CJ, Gibb BC (2011) Nonmonotonic assembly of a deep-cavity cavitand. J Am Chem Soc 133(13):4770–4773

    Article  CAS  PubMed  Google Scholar 

  93. Liu SM, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L (2005) The cucurbit[n]uril family: prime components for self-sorting systems. J Am Chem Soc 127(45):15959–15967

    Article  CAS  PubMed  Google Scholar 

  94. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196

    Article  CAS  PubMed  Google Scholar 

  95. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

    Article  CAS  PubMed  Google Scholar 

  96. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759

    Article  CAS  Google Scholar 

  97. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23(16):1623–1641

    Article  CAS  PubMed  Google Scholar 

  98. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic Charges. AM1-BCC model: I. Method. J Comput Chem 21(2):132–146

    Article  CAS  Google Scholar 

  99. Case DA, Cerutti RMBDS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Izadi NH,S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Luo TL,R, Madej B, Mermelstein D, Merz KM, Monard G, Nguyen H, Nguyen HT, Omelyan I, Roe AO,DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wolf JW,RM, Wu X, Xiao L, Kollman PA (2016) AMBER 2016, University of California, San Francisco

  100. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  PubMed  Google Scholar 

  101. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  102. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of cartesian equations of motion of a system with constraints—molecular-dynamics of N-alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  103. Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  104. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  105. Faver JC, Benson ML, He X, Roberts BP, Wang B, Marshall MS, Kennedy MR, Sherrill CD, Merz KM Jr (2011) Formal estimation of errors in computed absolute interaction energies of protein-ligand complexes. J Chem Theory Comput 7(3):790–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Faver JC, Zheng Z, Merz KM Jr (2011) Model for the fast estimation of basis set superposition error in biomolecular systems. J Chem Phys 135(14):144110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

Funding was provided by National Institutes of Health (Grant No: GM112406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Merz Jr..

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1018 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L.F., Bansal, N., Zheng, Z. et al. Detailed potential of mean force studies on host–guest systems from the SAMPL6 challenge. J Comput Aided Mol Des 32, 1013–1026 (2018). https://doi.org/10.1007/s10822-018-0153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0153-7

Keywords

Navigation