Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Laser assisted decay spectroscopy at the CRIS beam line at ISOLDE

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The new collinear resonant ionization spectroscopy (Cris) experiment at Isolde, Cern uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes and hyperfine structure measurements. The technique also offers the ability to purify an ion beam that is contaminated with radioactive isobars, including the ground state of an isotope from its isomer. A new program using the Cris technique to select only nuclear isomeric states for decay spectroscopy commenced last year. The isomeric ion beam is selected using a resonance within its hyperfine structure and subsequently deflected to a decay spectroscopy station. This consists of a rotating wheel implantation system for alpha and beta decay spectroscopy, and up to three high purity germanium detectors for gamma-ray detection. This paper gives an introduction to the Cris technique, the current status of the laser assisted decay spectroscopy set-up and recent results from the experiment in November 2011.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flanagan, K.T., et al.: AIP Conf. Proc. 1377, 38 (2011)

    Article  ADS  Google Scholar 

  2. Procter, T.J., et al.: J. Phys.: Conf. Ser. 381, 012070 (2012)

    Article  ADS  Google Scholar 

  3. Procter, T.J., et al.: LAP2012 Proceedings (2012)

  4. Cheal, B., Flanagan, K.T.: J. Phys. G 37(11), 113101 (2010)

    Article  ADS  Google Scholar 

  5. Hurst, G.S., et al.: Rev. Mod. Phys. 51(4), 767 (1979)

    Article  ADS  Google Scholar 

  6. Billowes, J., Campbell, P.: J. Phys. G: Nucl. Part. Phys. 21, 707 (1995)

    Article  ADS  Google Scholar 

  7. Fedosseev, V.N., Kudryavtsev, Yu., Mishin, V.I.: Phys. Scr. 85, 058104 (2012)

    Article  ADS  Google Scholar 

  8. Letokhov, V.: Opt. Commun. 7, 59 (1973)

    Article  ADS  Google Scholar 

  9. Weissman, L., et al.: Phys. Rev. C 65, 024315 (2002)

    Article  ADS  Google Scholar 

  10. Van Roosbroeck, J., et al.: Phys. Rev. Lett. 92, 112501 (2004)

    Article  ADS  Google Scholar 

  11. Stefanescu, I., et al.: Phys. Rev. Lett. 98, 122701 (2007)

    Article  ADS  Google Scholar 

  12. Cheal, B., et al.: Phys. Rev. C 82, 051302 (2010)

    Article  ADS  Google Scholar 

  13. Hakala, J., et al.: Phys. Rev. Lett. 101, 052502 (2008)

    Article  ADS  Google Scholar 

  14. Cheal, B., et al.: Phys. Rev. Lett. 104, 252502 (2010)

    Article  ADS  Google Scholar 

  15. Hornshoj, P., Hansen, P., Jonson, B.: Nucl. Phys. A 230(3), 380 (1974)

    Article  ADS  Google Scholar 

  16. Schulz, Ch., et al.: J. Phys. B At. Mol. Opt. Phys. 24, 4831 (1991)

    Article  ADS  Google Scholar 

  17. Lynch, K.M., et al.: J. Phys.: Conf. Ser. 381, 012128 (2012)

    Article  Google Scholar 

  18. Huyse, M., et al.: Phys. Rev. C 46, 1209 (1992)

    Article  ADS  Google Scholar 

  19. Chiara, C., Kondev, F.: Nucl. Data Sheets 111(1), 141 (2010)

    Article  ADS  Google Scholar 

  20. Uusitalo, J., et al.: Phys. Rev. C 71, 024306 (2005)

    Article  ADS  Google Scholar 

  21. Andreyev, A.N., et al.: CERN-INTC-2008-001, INTC-P-235. CERN Geneva (2008)

  22. Jonson, B., Richter, A.: Hyperfine Interact. 129, 1 (2000)

    Article  ADS  Google Scholar 

  23. Mané, E., et al.: Eur. Phys. J. A 42, 503 (2009)

    Article  ADS  Google Scholar 

  24. Hori, M., Dax, A.: Opt. Lett. 34(8), 1273 (2009)

    Article  ADS  Google Scholar 

  25. Dendooven, P.: Ph.D. thesis, Katholieke Universiteit Leuven (1992)

  26. Andreyev, A.N., et al.: Phys. Rev. Lett. 105, 252502 (2010)

    Article  ADS  Google Scholar 

  27. Rajabali, M.M., et al.: Nucl. Instrum. Methods Phys. Res. A 707, 35 (2013). doi:10.1016/j.nima.2012.12.090i

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to K. M. Lynch.

Additional information

Proceedings of the 6th international conference on Laser Probing (LAP 2012), Paris, France, 4–8 June 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynch, K.M., Cocolios, T.E., Rajabali, M.M. et al. Laser assisted decay spectroscopy at the CRIS beam line at ISOLDE. Hyperfine Interact 216, 95–101 (2013). https://doi.org/10.1007/s10751-013-0820-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-013-0820-y

Keywords