Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Variations on memetic algorithms for graph coloring problems

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

Graph vertex coloring with a given number of colors is a well-known and much-studied NP-complete problem. The most effective methods to solve this problem are proved to be hybrid algorithms such as memetic algorithms or quantum annealing. Those hybrid algorithms use a powerful local search inside a population-based algorithm. This paper presents a new memetic algorithm based on one of the most effective algorithms: the hybrid evolutionary algorithm (HEA) from Galinier and Hao (J Comb Optim 3(4): 379–397, 1999). The proposed algorithm, denoted HEAD—for HEA in Duet—works with a population of only two individuals. Moreover, a new way of managing diversity is brought by HEAD. These two main differences greatly improve the results, both in terms of solution quality and computational time. HEAD has produced several good results for the popular DIMACS benchmark graphs, such as 222-colorings for \({<}{} \texttt {dsjc1000.9}{>}\), 81-colorings for \({<}{} \texttt {flat1000\_76\_0}{>}\) and even 47-colorings for \({<}{} \texttt {dsjc500.5}{>}\) and 82-colorings for \({<}{} \texttt {dsjc1000.5}{>}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/.

  2. http://mat.gsia.cmu.edu/COLOR02/.

References

  • Aardal, K., Hoesel, S., Koster, A., Mannino, C., Sassano, A.: Models and solution techniques for frequency assignment problems. Q. J. Belg. Fr. Ital. Oper. Res. Soc. 1(4), 261–317 (2003)

    MathSciNet  MATH  Google Scholar 

  • Allignol, C., Barnier, N., Gondran, A.: Optimized flight level allocation at the continental scale. In: International Conference on Research in Air Transportation (ICRAT 2012), Berkeley, California, USA, 22–25 May 2012 (2012)

  • Barnier, N., Brisset, P.: Graph coloring for air traffic flow management. Ann. Oper. Res. 130(1–4), 163–178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Dib, M., Caminada, A., Mabed, H.: Frequency management in radio military networks. In: INFORMS Telecom 2010, 10th INFORMS Telecommunications Conference Montreal, Canada (2010)

  • Dubois, N., de Werra, D.: Epcot: an efficient procedure for coloring optimally with Tabu search. Comput. Math. Appl. 25(10–11), 35–45 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Fleurent, C., Ferland, J.: Genetic and hybrid algorithms for graph coloring. Ann. Oper. Res. 63, 437–464 (1996)

    Article  MATH  Google Scholar 

  • Galinier, P., Hao, J.-K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Comput. Oper. Res. 33, 2547–2562 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the \(k\)-coloring problem. Discret. Appl. Math. 156(2), 267–279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Galinier, P., Hamiez, J.-P., Hao, J.-K., Porumbel, D.C.: Recent advances in graph vertex coloring. In: Zelinka, I.,  Snásel, V.,  Abraham, A. (eds) Handbook of Optimization, Vol. 38 of Intelligent Systems Reference Library, pp. 505–528. Springer, Berlin (2013)

  • Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of \({\cal{NP}}\)-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  • Gusfield, D.: Partition-distance: a problem and class of perfect graphs arising in clustering. Inf. Process. Lett. 82(3), 159–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Hao, J.-K.: Memetic algorithms in discrete optimization. In: Neri, F.,  Cotta, C.,  Moscato, P. (eds.) Handbook of Memetic Algorithms, Vol. 379 of Studies in Computational Intelligence, pp. 73–94. Springer, Berlin (2012)

  • Hao, J.-K., Wu, Q.: Improving the extraction and expansion method for large graph coloring. Discret. Appl. Math. 160(16–17), 2397–2407 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Held, S., Cook, W., Sewell, E.C.: Safe lower bounds for graph coloring. In: Günlük, O., Woeginger, G.J. (eds.) Integer Programming and Combinatoral Optimization. IPCO 2011. Lecture Notes in Computer Science, Vol. 6655. Springer, Berlin, Heidelberg (2011)

  • Hertz, A., de Werra, D.: Using Tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discret. Appl. Math. 156(13), 2551–2560 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, D.S., Trick, M.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, 1993, Vol. 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, Providence (1996)

  • Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by Simulated annealing: an experimental evaluation. Part II, graph coloring and number partitioning. Oper. Res. 39(3), 378–406 (1991)

    Article  MATH  Google Scholar 

  • Karp, R.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  • Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res. Natl. Bur. Stand. 84(6), 489–506 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis, R.: Graph coloring and recombination. In: Kacprzyk, J., Pedrycz, W. (eds.) Handbook of Computational Intelligence, pp. 1239–1254. Springer, Berlin (2015). (Ch. Graph Coloring and Recombination)

  • Lü, Z., Hao, J.-K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203(1), 241–250 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper. Res. 17(1), 1–34 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Malaguti, E., Monaci, M., Toth, P.: An exact approach for the vertex coloring problem. Discret. Optim. 8(2), 174–190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Porumbel, D.C., Hao, J.-K., Kuntz, P.: An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring. Comput. Oper. Res. 37, 1822–1832 (2010)

    Article  MATH  Google Scholar 

  • Titiloye, O., Crispin, A.: Graph coloring with a distributed hybrid quantum annealing algorithm. In: O’Shea, J., Nguyen, N., Crockett, K., Howlett, R., Jain, L. (eds.) Agent and Multi-Agent Systems: Technologies and Applications. Lecture Notes in Computer Science, vol. 6682, pp. 553–562. Springer, Berlin (2011a)

    Chapter  Google Scholar 

  • Titiloye, O., Crispin, A.: Quantum annealing of the graph coloring problem. Discret. Optim. 8(2), 376–384 (2011b)

    Article  MathSciNet  MATH  Google Scholar 

  • Titiloye, O., Crispin, A.: Parameter tuning patterns for random graph coloring with quantum annealing. PLoS ONE 7(11), e50060 (2012)

    Article  Google Scholar 

  • Wood, D.C.: A technique for coloring a graph applicable to large-scale timetabling problems. Comput. J. 12, 317–322 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, Q., Hao, J.-K.: Coloring large graphs based on independent set extraction. Comput. Oper. Res. 39(2), 283–290 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Zufferey, N., Amstutz, P., Giaccari, P.: Graph colouring approaches for a satellite range scheduling problem. J. Sched. 11(4), 263–277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Moalic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moalic, L., Gondran, A. Variations on memetic algorithms for graph coloring problems. J Heuristics 24, 1–24 (2018). https://doi.org/10.1007/s10732-017-9354-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-017-9354-9

Keywords

Navigation