Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Negotiation-Based Scheduling of Scientific Grid Workflows Through Advance Reservations

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

In its broadest sense, scheduling of Grid applications can be viewed as a negotiation process between a scheduling service optimising user-centric objectives such as execution time, and a resource manager optimising provider-centric metrics such as resource utilisation or fairness. In this paper we enhance an existing list scheduling algorithm designed for minimising the workflow makespan with advance reservation-based negotiation functionality. As an instantiation of the new negotiation phase, we investigate two advance reservation functionality from the resource provider perspective: attentive and progressive. We illustrate through real-world experiments a two-fold benefit of our approach: improved execution predictability from the user’s perspective, and higher resource utilisation fairness through a new progressive allocation strategy from the provider’s perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aida, K., Casanova, H.: Scheduling mixed-parallel applications with advance reservations. In: 17th International Symposium on High Performance Distributed Computing. IEEE Computer Society Press, CA (2008)

    Google Scholar 

  2. Dumitrescu, C.L., Raicu, I., Foster, I.: The design, usage, and performance of GRUBER: a Grid usage service level agreement based brokering infrastructure. J. Grid Computing 5(1), 99–126 (2007)

    Article  Google Scholar 

  3. Elmroth, E., Tordsson, J.: A Grid resource broker supporting advance reservations and benchmark-based resource selection. In: State-of-the-art in Scientific Computing. LNCS, vol. 3732, pp. 1077–1085. Springer, Berlin (2005)

    Google Scholar 

  4. Fahringer, T., Prodan, R., Duan, R., Hofer, J., Nadeem, F., Nerieri, F., Stefan Podlipnig, J.Q., Siddiqui, M., Truong, H.L., Villazon, A., Wieczorek, M.: Askalon: a development and Grid computing environment for scientific workflows. In: Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.) Scientific Workflows for Grids, Workflows for e-Science, Frameworks and Tools: Workflow Generation, Refinement and Execution, pp. 450–471. Springer, Berlin (2007)

    Google Scholar 

  5. Fahringer, T., Qin, J., Hainzer, S.: Specification of Grid workflow applications with AGWL: an abstract Grid workflow language. In: International Symposium on Cluster Computing and the Grid. IEEE Computer Society Press, CA (2005)

    Google Scholar 

  6. Foster, I., Kesselman, C.: Globus: a metacomputing infrastructure toolkit. Int. J. Supercomput. Appl. High Perform. Comput. 11(2), 115–128 (1997)

    Article  Google Scholar 

  7. Foster, I., Kesselman, C., Lee, C., Lindell, R., Nahrstedt, K., Roy, A.: A distributed resource management architecture that supports advance reservations and co-allocation. In: International Workshop on Quality of Service, pp. 27–36. IEEE Computer Society Press, CA (1999)

    Google Scholar 

  8. Hudert, S., Ludwig, H., Wirtz, G.: Negotiating SLAs—an approach for a generic negotiation framework for WS-Agreement. J. Grid Computing 7(2), 225–246 (2009)

    Article  Google Scholar 

  9. Kennedy, K., Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A.: Task scheduling strategies for task scheduling strategies for workflow-based applications in Grids. IEEE Computer Society Press, CA (2005)

    Google Scholar 

  10. McGough, A.S., Afzal, A., Darlington, J., Furmento, N., Mayer, A., Young, L.: Making the Grid predictable through reservation and performance modelling. Comput. J. 48(3), 358–368 (2005)

    Article  Google Scholar 

  11. Nadeem, F., Yousaf, M., Prodan, R., Fahringer, T.: Soft benchmarks-based application performance prediction using a minimum training set. In: International Conference on e Science and Grid Computing. IEEE Computer Society Press, CA (2006)

    Google Scholar 

  12. Prodan, R., Fahringer, T.: Dynamic scheduling of scientific workflow applications on the Grid using a modular optimisation tool: a case study. In: 20th Symposion of Applied Computing. ACM, New York (2005)

    Google Scholar 

  13. Prodan, R., Fahringer, T.: Grid computing. Experiment Management, Tool Integration, and Scientific Grid Workflows. LNCS, Scientific Grid Workflows, vol. 4340, chap. 317, pp. 203–269. Springer, Berlin (2007)

    Google Scholar 

  14. Prodan, R., Fahringer, T.: Overhead analysis of scientific workflows in Grid environments. IEEE Trans. Parallel Distrib. Syst. 19(3), 378–393 (2008)

    Article  Google Scholar 

  15. Pugliese, A., Talia, D., Yahyapour, R.: Modeling and supporting Grid scheduling. J. Grid Computing 6(2), 195–213 (2008)

    Article  Google Scholar 

  16. Röblitz, T., Reinefeld, A.: Co-reservation with the concept of virtual resources. In: International Conference on Cluster Computing and the Grid, pp. 398–406. IEEE Computer Society Press, CA (2005)

    Google Scholar 

  17. Schwarz, K., Blaha, P., Madsen, G.K.H.: Electronic structure calculations of solids using the wien2k package for material sciences. Comput. Phys. Commun. 147(71) (2002)

  18. Siddiqui, M., Villazón, A., Fahringer, T.: Grid capacity planning with negotiation-based advance reservation for optimized qos. In: Supercomputing Conference, p. 103. ACM, New York (2006)

    Google Scholar 

  19. Singh, G., Kesselman, C., Deelman, E.: Application-level resource provisioning on the Grid. In: 2nd International Conference on e-Science and Grid Computing, p. 83. IEEE Computer Society Press, CA (2006)

    Google Scholar 

  20. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13, 260–274 (2002)

    Article  Google Scholar 

  21. Volkert, J.: Austrian Grid: overview on the project with focus on parallel applications. In: International Symposium on Parallel and Distributed Computing, p. 14. Timisoara, Romania (2006)

    Chapter  Google Scholar 

  22. Wieczorek, M., Prodan, R., Fahringer, T.: Scheduling of scientific workflows in the ASKALON Grid environment. Special issue on scientific workflows. SIGMOD Rec. 34(3), 56–62 (2005)

    Article  Google Scholar 

  23. Wieczorek, M., Prodan, R., Fahringer, T.: Comparison of workflow scheduling strategies on the Grid. In: International Conference on Parallel Processing and Applied Mathematics. LNCS, vol. 3911, pp. 792–800. Springer, Berlin (2006)

    Chapter  Google Scholar 

  24. Zhao, H., Sakellariou, R.: Advance reservation policies for workflows. In: 12th International Workshop on Job Scheduling Strategies for Parallel Processing. LNCS, vol. 4376, pp. 47–67. Springer (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Prodan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prodan, R., Wieczorek, M. Negotiation-Based Scheduling of Scientific Grid Workflows Through Advance Reservations. J Grid Computing 8, 493–510 (2010). https://doi.org/10.1007/s10723-010-9165-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-010-9165-9

Keywords

Navigation