Abstract
Although the cloud computing domain is progressing rapidly, the deployment of various network intensive software utilities in the cloud is still a challenging task. The Quality of Service (QoS) for various gaming, simulations, videoconferencing, video streaming or even file uploading tasks may be significantly affected by the quality and geolocation of the selected underlying computing resources, which are available only when the specific functionality is required. This study presents a new architecture for geographic orchestration of network intensive software components which is designed for high QoS. Key elements of this architecture are a Global Cluster Manager operating within Software-Defined Data Centres (SDDCs), a runtime QoS Monitoring System, and a QoS Modeller and Decision Maker for automated orchestration of software utilities. The implemented system automatically selects the best geographically available computing resource within the SDDC according to the developed QoS model of the software component. This architecture is event-driven as the services are deployed and destroyed in real-time for every usage event. The utility of the implemented orchestration technology is verified qualitatively and in relation to the potential gains of selected QoS metrics by using two network intensive software utilities implemented as containers: an HTTP(S) File Upload service and a Jitsi Meet videoconferencing service. The study shows potential for QoS improvements in comparison to existing orchestration systems.
Similar content being viewed by others
References
Žabkar, J., Žabkar, R., Vladušič, D., Čemas, D., Šuc, D., Bratko, I.: Q 2 prediction of ozone concentrations. Ecol. Model. 191(1), 68–82 (2006). https://doi.org/10.1016/j.ecolmodel.2005.08.013. Selected Papers from the Fourth International Workshop on Environmental Applications of Machine Learning, September 27–October 1, 2004, Bled, Slovenia. http://www.sciencedirect.com/science/article/pii/S0304380005003509
Ahonen, J.J.: On qualitative modelling. AI & Soc. 8(1), 17–28 (1994). https://doi.org/10.1007/BF02065175
Avetisyan, A.I., Campbell, R., Gupta, I., Heath, M.T., Ko, S.Y., Ganger, G.R., Kozuch, M.A., O’Hallaron, D., Kunze, M., Kwan, T.T., Lai, K., Lyons, M., Milojicic, D.S., Lee, H.Y., Soh, Y.C., Ming, N.K., Luke, J.Y., Namgoong, H.: Open cirrus: a global cloud computing testbed. Computer 43(4), 35–43 (2010). https://doi.org/10.1109/MC.2010.111
Bari, M.F., Chowdhury, S.R., Ahmed, R., Boutaba, R.: Policycop: an autonomic qos policy enforcement framework for software defined networks. In: 2013 IEEE SDN for Future Networks and Services (SDN4FNS), pp 1–7 (2013). https://doi.org/10.1109/SDN4FNS.2013.6702548
Baxley, K., la Rosa, J.D., Wenning, M.: Deploying workloads with juju and maas in ubuntu 14.04 lts. http://docplayer.net/12356952-Solution-brief-ca-service-management-service-catalog-can-we-manage-and-deliver-the-services-needed-where-when-and-how-our-users-need-them.html. A Dell Technical White paper (2014)
Berndtsson, G., Folkesson, M., Kulyk, V.: Subjective quality assessment of video conferences and telemeetings. In: Proceedings of the 19th International Packet Video Workshop (PV), pp 25–30. IEEE, Piscataway (2012)
Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog Computing: a platform for internet of things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and Internet of Things: a Roadmap for Smart Environments, pp. 169–186. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-05029-4_7
Bratko, I., Suc, D.: Learning qualitative models. AI Mag. 24(4), 107 (2003)
Buyya, R., Calheiros, R.N., Son, J., Dastjerdi, A.V., Yoon, Y.: Software-defined cloud computing: architectural elements and open challenges. arXiv:1408.6891 (2014)
Carvalho, J.P., Tome, J.A.B.: Qualitative modelling of an economic system using rule-based fuzzy cognitive maps. In: 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542). https://doi.org/10.1109/FUZZY.2004.1375476, vol. 2, pp 659–664 (2004)
Chang, V., Ramachandran, M.: Financial modeling and prediction as a service. J. Grid Comput. 15(2), 177–195 (2017). https://doi.org/10.1007/s10723-017-9393-3
Cheng, B.H.C., Eder, K.I., Gogolla, M., Grunske, L., Litoiu, M., Müller, H.A., Pelliccione, P., Perini, A., Qureshi, N.A., Rumpe, B., Schneider, D., Trollmann, F., Villegas, N.M.: Using Models at Runtime to Address Assurance for Self-Adaptive Systems, pp 101–136. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-08915-7_4
Chowdhury, N.M.K., Boutaba, R.: A survey of network virtualization. Comput. Netw. 54(5), 862–876 (2010). https://doi.org/10.1016/j.comnet.2009.10.017
Devops: devops official web page. https://devops.com/ (2017). Accessed August 2017
Fabric8: fabric8 documentation. http://fabric8.io/guide/overview.html (2017). Accessed August 2017
Fiedler, M., Hossfeld, T., Tran-Gia, P.: A generic quantitative relationship between quality of experience and quality of service. IEEE Netw. 24(2), 36–41 (2010). https://doi.org/10.1109/MNET.2010.5430142
Forbus, K.D.: Qualitative modeling. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, Chap. 9, pp 361–393. Elsevier B. V., Amsterdam (2008)
Gec, S., Kimovski, D., Paščinski, U., Prodan, R., Stankovski, V.: Semantic approach for multi-objective optimisation of the entice distributed virtual machine and container images repository. Concurrency and Computation: Practice and Experience, pp. e4264–n/a (2017). https://doi.org/10.1002/cpe.4264
Heidari, P., Lemieux, Y., Shami, A.: Qos assurance with light virtualization - a survey. In: 2016 IEEE International Conference on Cloud Computing Technology and Science (Cloudcom), pp 558–563 (2016). https://doi.org/10.1109/CloudCom.2016.0097
Hoque, S., de Brito, M.S., Willner, A., Keil, O., Magedanz, T.: Towards container orchestration in fog computing infrastructures. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC) vol. 2, pp. 294–299 (2017). https://doi.org/10.1109/COMPSAC.2017.248
Huebscher, M.C., McCann, J.A.: A survey of autonomic computing—degrees, models, and applications. ACM Comput. Surv. 40(3), 7:1–7:28 (2008). https://doi.org/10.1145/1380584.1380585
ITU-T: P.1301 : subjective quality evaluation of audio and audiovisual multiparty telemeetings. Recommendation P.1301, International Telecommunication Union, Geneva (2012)
Jamshidi, P., Pahl, C., Mendonca, N.C.: Managing uncertainty in autonomic cloud elasticity controllers. IEEE Cloud Comput. 3(3), 50–60 (2016). https://doi.org/10.1109/MCC.2016.66
Jifeng, H., Li, X., Liu, Z.: Component-based software engineering. In: Van Hung, D., Wirsing, M. (eds.) Theoretical Aspects of Computing – ICTAC 2005: Second International Colloquium, Hanoi, Vietnam, October 17–21, 2005. Proceedings, pp 70–95. Springer, Berlin (2005). https://doi.org/10.1007/11560647_5
Kacsuk, P., Kecskemeti, G., Kertesz, A., Nemeth, Z., Kovács, J., Farkas, Z.: Infrastructure aware scientific workflows and infrastructure aware workflow managers in science gateways. J. Grid Comput. 14(4), 641–654 (2016). https://doi.org/10.1007/s10723-016-9380-0
Kliazovich, D., Pecero, J.E., Tchernykh, A., Bouvry, P., Khan, S.U., Zomaya, A.Y.: CA-DAG: modeling communication-aware applications for scheduling in cloud computing. J. Grid Comput. 14(1), 23–39 (2016). https://doi.org/10.1007/s10723-015-9337-8
Kornyshova, E., Deneckère, R.: Using an ontology for modeling decision-making knowledge, pp. 1553–1562 (2012). https://doi.org/10.3233/978-1-61499-105-2-1553
Liu, C., Van Der Merwe, J., Mao, Y., Fernández, M.: Cloud resource orchestration: a data-centric approach. In: Proceedings of the 5th Biennial Conference on Innovative Data Systems Research, CIDR 2011, pp 241–248 (2011)
Liu, H., Parashar, M., Hariri, S.: A component-based programming model for autonomic applications. In: Proceedings of the International Conference on Autonomic Computing, 2004, pp. 10–17 (2004). https://doi.org/10.1109/ICAC.2004.1301341
López-Pires, F., Barán, B.: Many-objective virtual machine placement. J. Grid Comput. 15(2), 161–176 (2017). https://doi.org/10.1007/s10723-017-9399-x
Lu, Y., Wang, F., Jia, M., Qi, Y.: Centrifugal compressor fault diagnosis based on qualitative simulation and thermal parameters. Mech. Syst. Signal Process. 81, 259–273 (2016)
Lunze, J.: Qualitative modelling of linear dynamical systems with quantized state measurements. Automatica 30(3), 417–431 (1994). https://doi.org/10.1016/0005-1098(94)90119-8. http://www.sciencedirect.com/science/article/pii/0005109894901198
Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures – a technology review. In: 2015 3rd International Conference on Future Internet of Things and Cloud, pp. 379–386 (2015). https://doi.org/10.1109/FiCloud.2015.35
Shila, D.M., Shen, W., Cheng, Y., Tian, X., Shen, X.S.: Amcloud: toward a secure autonomic mobile ad hoc cloud computing system. IEEE Wirel. Commun. 24(2), 74–81 (2017). https://doi.org/10.1109/MWC.2016.1500119RP
Singh, S., Chana, I.: A survey on resource scheduling in cloud computing: issues and challenges. J. Grid Comput. 14(2), 217–264 (2016). https://doi.org/10.1007/s10723-015-9359-2
Software: autonomous self-adaptation platform. https://hub.docker.com/r/jernejtrnkoczy/jcontrolagent01 (2017)
Software: docker official web page. https://www.docker.com/ (2017)
Software: Jitsi meet docker container. https://hub.docker.com/r/jernejtrnkoczy/jitsimeet004/ (2017)
Software: Kubernetes. https://kubernetes.io/ (2017)
Software: Netdata. https://github.com/firehol/netdata (2017)
Sun, Y., White, J., Eade, S., Schmidt, D.C.: ROAR: a QoS-oriented modeling framework for automated cloud resource allocation and optimization. J. Syst. Softw. 116, 146–161 (2016). https://doi.org/10.1016/j.jss.2015.08.006
Taherizadeh, S., Ian, T., Jones, A., Zhao, Z., Stankovski, V.: A network edge monitoring approach for real-time data streaming applications. In: Proceedings of the 13th International Conference on Economics of Grids, Clouds, Systems and Services (GECON), p 2016. ACM, Athens (2016)
Taherizadeh, S., Stankovski, V.: Quality of service assurance for internet of things time-critical cloud applications. In: Proceedings of the 6th International Congress on Advanced Applied Informatics (AAI 2017) (2017)
Taherizadeh, S., Taylor, I., Jones, A., Zhao, Z., Stankovski, V.: A Network Edge Monitoring Approach for Real-Time Data Streaming Applications, pp 293–303. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-61920-0_21
Toosi, A.N., Calheiros, R.N., Buyya, R.: Interconnected cloud computing environments: challenges, taxonomy, and survey. ACM Comput. Surv. 47(1), 7:1–7:47 (2014). https://doi.org/10.1145/2593512
Trihinas, D., Sofokleous, C., Loulloudes, N., Foudoulis, A., Pallis, G., Dikaiakos, M.D.: Managing and Monitoring Elastic Cloud Applications, pp 523–527. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-08245-5_42
Vladusic, D., Kompare, B., Bratko, I.: Modelling lake glumso with q2 learning. Ecol. Model. 191, 33–46 (2006)
Wang, J., Taal, A., Martin, P., Hu, Y., Zhou, H., Pang, J., de Laat, C., Zhao, Z.: Planning virtual infrastructures for time critical applications with multiple deadline constraints. Futur. Gener. Comput. Syst. 75, 365–375 (2017). https://doi.org/10.1016/j.future.2017.02.001. http://www.sciencedirect.com/science/article/pii/S0167739X17301905
Weerasiri, D., Barukh, M.C., Benatallah, B., Sheng, Q.Z., Ranjan, R.: A taxonomy and survey of cloud resource orchestration techniques. ACM Comput. Surv. 50(2), 26:1–26:41 (2017). https://doi.org/10.1145/3054177
Wikipage: Linux foundation wiki web page. https://wiki.linuxfoundation.org/networking/netem (2017)
Winkler, S., Mohandas, P.: The evolution of video quality measurement: From psnr to hybrid metrics. IEEE Trans. Broadcast. 54(3), 660–668 (2008). https://doi.org/10.1109/TBC.2008.2000733
Xiong, P., Pu, C., Zhu, X., Griffith, R.: Vperfguard: an automated model-driven framework for application performance diagnosis in consolidated cloud environments. In: Proceedings of the 4th ACM/SPEC International Conference on Performance Engineering, pp 271–282. ACM, New York (2013)
Zhan, Z.H., Liu, X.F., Gong, Y.J., Zhang, J., Chung, H.S.H., Li, Y.: Cloud computing resource scheduling and a survey of its evolutionary approaches. ACM Comput. Surv. 47(4), 63:1–63:33 (2015). https://doi.org/10.1145/2788397
Acknowledgements
This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 643963 (SWITCH project: Software Workbench for Interactive, Time Critical and Highly self-adaptive cloud applications) and under grant agreement no. 644179 (ENTICE project: dEcentralised repositories for traNsparent and efficienT vIrtual maChine opErations). The authors are thankful to the Academic and Research Network of Slovenia (ARNES) for using their public cloud infrastructure.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Paščinski, U., Trnkoczy, J., Stankovski, V. et al. QoS-Aware Orchestration of Network Intensive Software Utilities within Software Defined Data Centres. J Grid Computing 16, 85–112 (2018). https://doi.org/10.1007/s10723-017-9415-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10723-017-9415-1