Abstract
We provide conditions for convergence of polyhedral surfaces and their discrete geometric properties to smooth surfaces embedded in Euclidean 3-space. Under the assumption of convergence of surfaces in Hausdorff distance, we show that convergence of the following properties are equivalent: surface normals, surface area, metric tensors, and Laplace–Beltrami operators. Additionally, we derive convergence of minimizing geodesics, mean curvature vectors, and solutions to the Dirichlet problem.
Similar content being viewed by others
References
Aleksandrov, A.D., Zalgaller, V.A.: Intrinsic Geometry of Surfaces, vol. 15 of Translation of Mathematical Monographs. AMS (1967)
Banchoff T. (1967). Critical points and curvature for embedded polyhedra. J. Differ. Geom. 1: 257–268
Bobenko A.I., Hoffmann T. and Springborn B.A. (2006). Minimal surfaces from circle patterns: geometry from combinatorics. Ann. Math. 164(1): 231–264
Bobenko A.I. and Pinkall U. (1996). Discrete isothermic surfaces. J. Reine Angew. Math. 475: 187–208
Braess D. (2001). Finite Elements Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge
Brakke K. (1992). The surface evolver. Exp. Math. 1(2): 141–165
Brehm U. and Kühnel W. (1982). Smooth approximation of polyhedral surfaces regarding curvatures. Geom. Dedicata 12: 435–461
Cheeger J., Müller W. and Schrader R. (1984). Curvature of piecewise flat metrics. Comm. Math. Phys. 92: 405–454
Cohen-Steiner, D., Morvan, J.-M.: Restricted Delaunay triangulations and normal cycle. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 312–321 (2003)
Duffin R.J. (1959). Distributed and lumped networks. J. Math. Mech. 8: 793–825
Dziuk G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Partial Differential Equations and Calculus of Variations, vol. 1357 of Lec. Notes Math., pp. 142–155. Springer (1988)
Dziuk G. (1991). An algorithm for evolutionary surfaces. Num. Math. 58: 603–611
Dziuk G. and Hutchinson J.E. (1999). The discrete Plateau problem: convergence results. Math. Comput. 68: 519–546
Federer H. (1959). Curvature measures. Trans. Am. Math. 93: 418–491
Fu J.H.G. (1993). Convergence of curvatures in secant approximations. J. Differ. Geom. 37: 177–190
Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations. Springer (1977)
Goodman-Strauss, C., Sullivan, J.M.: Cubic Polyhedra, http://arXiv.org.math/0205145 (2002)
Gromov M.: Structures métriques pour les variétés riemanniennes. Textes Mathématiques. Cedic/Fernand Nathan (1981)
Große-Brauckmann K. and Polthier K. (1997). Compact constant mean curvature surfaces with low genus. Exper. Math. 6(1): 13–32
Karcher H. and Polthier K. (1996). Construction of triply periodic minimal surfaces. Phil. Trans. Royal Soc. Lond. 354: 2077–2104
Meek D.S. and Walton D.J. (2000). On surface normal and Gaussian curvature approximations given data sampled from a smooth surface. Comput. Aided Geom. Design 17(6): 521–543
Mercat C. (2001). Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218(1): 177–216
Morvan, J.-M.: Generalized curvatures. Preprint.
Morvan J.-M. and Thibert B. (2004). Approximation of the normal vector field and the area of a smooth surface. Discrete Comput. Geom. 32(3): 383–400
Oberknapp B., Polthier K.: An algorithm for discrete constant mean curvature surfaces. In: Hege, H.-C., Polthier, K. (eds.), Visualization and Mathematics. Springer (1997)
Pinkall U. and Polthier K. (1993). Computing discrete minimal surfaces and their conjugates. Exp. Math. 2: 15–36
Polthier K.: Computational aspects of discrete minimal surfaces. In: Hoffman, D. (ed.), Global Theory of Minimal Surfaces. CMI/AMS (2005)
Polthier, K.: Unstable periodic discrete minimal surfaces. In: Hildebrandt, S., Karcher, H. (eds.) Geometric Analysis and Nonlinear Partial Differential Equations, pp. 127–143. Springer Verlag (2002)
Polthier K. and Rossman W. (2002). Index of discrete constant mean curvature surfaces. J. Reine Angew. Math. 549: 47–77
Pozzi P. (2005). The discrete Douglas problem: convergence results. IMA J. Num. Ana. 25(42): 337–378
Reshetnyak Y.G.: Geometry IV. Non-regular Riemannian geometry. In: Encyclopaedia of Mathematical Sciences, vol. 70, Springer-Verlag, pp. 3–164 (1993)
Rossman, W.: Infinite periodic discrete minimal surfaces without self-intersections. Balkan J. Geom. Appl. 10, 106–128 (2005)
Schramm O. (1997). Circle patterns with the combinatorics of the square grid. Duke Math. J. 86: 347–389
Schwarz H.A.: Sur une définition erronée de l’aire d’une surface courbe. In: Gesammelte Mathematische Abhandlungen, vol. 2. Springer-Verlag, pp. 309–311 (1890)
Stone D.A. (1976). Geodesics in piecewise linear manifolds. Trans. AMS 215: 1–44
Thurston W.P. The Geometry and Topology of Three-manifolds. http://www.msri.org/publications/books/gt3m (1980)
Troyanov M. (1986). Les surfaces euclidiennes à singularités coniques. Ens. Math. 32: 79–94
Wardetzky M.: Discrete differential operators on polyhedral surfaces—convergence and approximation. Ph.D. thesis, Free University Berlin (2006)
Xu G. (2004). Discrete Laplace–Beltrami operators and their convergence. Comput. Aided Geom. Design 21(8): 767–784
Xu G. (2006). Convergence analysis of a discretization scheme for Gaussian curvature over triangular surfaces. Comput. Aided Geom. Design 23(2): 193–207
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the DFG Research Center Matheon “Mathematics for key technologies” in Berlin.
Rights and permissions
About this article
Cite this article
Hildebrandt, K., Polthier, K. & Wardetzky, M. On the convergence of metric and geometric properties of polyhedral surfaces. Geom Dedicata 123, 89–112 (2006). https://doi.org/10.1007/s10711-006-9109-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10711-006-9109-5