Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the convergence of metric and geometric properties of polyhedral surfaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We provide conditions for convergence of polyhedral surfaces and their discrete geometric properties to smooth surfaces embedded in Euclidean 3-space. Under the assumption of convergence of surfaces in Hausdorff distance, we show that convergence of the following properties are equivalent: surface normals, surface area, metric tensors, and Laplace–Beltrami operators. Additionally, we derive convergence of minimizing geodesics, mean curvature vectors, and solutions to the Dirichlet problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov, A.D., Zalgaller, V.A.: Intrinsic Geometry of Surfaces, vol. 15 of Translation of Mathematical Monographs. AMS (1967)

  2. Banchoff T. (1967). Critical points and curvature for embedded polyhedra. J. Differ. Geom. 1: 257–268

    MathSciNet  Google Scholar 

  3. Bobenko A.I., Hoffmann T. and Springborn B.A. (2006). Minimal surfaces from circle patterns: geometry from combinatorics. Ann. Math. 164(1): 231–264

    Article  MATH  MathSciNet  Google Scholar 

  4. Bobenko A.I. and Pinkall U. (1996). Discrete isothermic surfaces. J. Reine Angew. Math. 475: 187–208

    MATH  MathSciNet  Google Scholar 

  5. Braess D. (2001). Finite Elements Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  6. Brakke K. (1992). The surface evolver. Exp. Math. 1(2): 141–165

    MATH  MathSciNet  Google Scholar 

  7. Brehm U. and Kühnel W. (1982). Smooth approximation of polyhedral surfaces regarding curvatures. Geom. Dedicata 12: 435–461

    Article  MATH  MathSciNet  Google Scholar 

  8. Cheeger J., Müller W. and Schrader R. (1984). Curvature of piecewise flat metrics. Comm. Math. Phys. 92: 405–454

    Article  MATH  MathSciNet  Google Scholar 

  9. Cohen-Steiner, D., Morvan, J.-M.: Restricted Delaunay triangulations and normal cycle. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 312–321 (2003)

  10. Duffin R.J. (1959). Distributed and lumped networks. J. Math. Mech. 8: 793–825

    MATH  MathSciNet  Google Scholar 

  11. Dziuk G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Partial Differential Equations and Calculus of Variations, vol. 1357 of Lec. Notes Math., pp. 142–155. Springer (1988)

  12. Dziuk G. (1991). An algorithm for evolutionary surfaces. Num. Math. 58: 603–611

    Article  MATH  MathSciNet  Google Scholar 

  13. Dziuk G. and Hutchinson J.E. (1999). The discrete Plateau problem: convergence results. Math. Comput. 68: 519–546

    Article  MATH  MathSciNet  Google Scholar 

  14. Federer H. (1959). Curvature measures. Trans. Am. Math. 93: 418–491

    Article  MATH  MathSciNet  Google Scholar 

  15. Fu J.H.G. (1993). Convergence of curvatures in secant approximations. J. Differ. Geom. 37: 177–190

    MATH  Google Scholar 

  16. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations. Springer (1977)

  17. Goodman-Strauss, C., Sullivan, J.M.: Cubic Polyhedra, http://arXiv.org.math/0205145 (2002)

  18. Gromov M.: Structures métriques pour les variétés riemanniennes. Textes Mathématiques. Cedic/Fernand Nathan (1981)

  19. Große-Brauckmann K. and Polthier K. (1997). Compact constant mean curvature surfaces with low genus. Exper. Math. 6(1): 13–32

    MATH  Google Scholar 

  20. Karcher H. and Polthier K. (1996). Construction of triply periodic minimal surfaces. Phil. Trans. Royal Soc. Lond. 354: 2077–2104

    Article  MATH  MathSciNet  Google Scholar 

  21. Meek D.S. and Walton D.J. (2000). On surface normal and Gaussian curvature approximations given data sampled from a smooth surface. Comput. Aided Geom. Design 17(6): 521–543

    Article  MATH  MathSciNet  Google Scholar 

  22. Mercat C. (2001). Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218(1): 177–216

    Article  MATH  MathSciNet  Google Scholar 

  23. Morvan, J.-M.: Generalized curvatures. Preprint.

  24. Morvan J.-M. and Thibert B. (2004). Approximation of the normal vector field and the area of a smooth surface. Discrete Comput. Geom. 32(3): 383–400

    Article  MATH  MathSciNet  Google Scholar 

  25. Oberknapp B., Polthier K.: An algorithm for discrete constant mean curvature surfaces. In: Hege, H.-C., Polthier, K. (eds.), Visualization and Mathematics. Springer (1997)

  26. Pinkall U. and Polthier K. (1993). Computing discrete minimal surfaces and their conjugates. Exp. Math. 2: 15–36

    MATH  MathSciNet  Google Scholar 

  27. Polthier K.: Computational aspects of discrete minimal surfaces. In: Hoffman, D. (ed.), Global Theory of Minimal Surfaces. CMI/AMS (2005)

  28. Polthier, K.: Unstable periodic discrete minimal surfaces. In: Hildebrandt, S., Karcher, H. (eds.) Geometric Analysis and Nonlinear Partial Differential Equations, pp. 127–143. Springer Verlag (2002)

  29. Polthier K. and Rossman W. (2002). Index of discrete constant mean curvature surfaces. J. Reine Angew. Math. 549: 47–77

    MATH  MathSciNet  Google Scholar 

  30. Pozzi P. (2005). The discrete Douglas problem: convergence results. IMA J. Num. Ana. 25(42): 337–378

    Article  MATH  MathSciNet  Google Scholar 

  31. Reshetnyak Y.G.: Geometry IV. Non-regular Riemannian geometry. In: Encyclopaedia of Mathematical Sciences, vol. 70, Springer-Verlag, pp. 3–164 (1993)

  32. Rossman, W.: Infinite periodic discrete minimal surfaces without self-intersections. Balkan J. Geom. Appl. 10, 106–128 (2005)

    MATH  MathSciNet  Google Scholar 

  33. Schramm O. (1997). Circle patterns with the combinatorics of the square grid. Duke Math. J. 86: 347–389

    Article  MATH  MathSciNet  Google Scholar 

  34. Schwarz H.A.: Sur une définition erronée de l’aire d’une surface courbe. In: Gesammelte Mathematische Abhandlungen, vol. 2. Springer-Verlag, pp. 309–311 (1890)

  35. Stone D.A. (1976). Geodesics in piecewise linear manifolds. Trans. AMS 215: 1–44

    Article  MATH  Google Scholar 

  36. Thurston W.P. The Geometry and Topology of Three-manifolds. http://www.msri.org/publications/books/gt3m (1980)

  37. Troyanov M. (1986). Les surfaces euclidiennes à singularités coniques. Ens. Math. 32: 79–94

    MATH  MathSciNet  Google Scholar 

  38. Wardetzky M.: Discrete differential operators on polyhedral surfaces—convergence and approximation. Ph.D. thesis, Free University Berlin (2006)

  39. Xu G. (2004). Discrete Laplace–Beltrami operators and their convergence. Comput. Aided Geom. Design 21(8): 767–784

    Article  MATH  MathSciNet  Google Scholar 

  40. Xu G. (2006). Convergence analysis of a discretization scheme for Gaussian curvature over triangular surfaces. Comput. Aided Geom. Design 23(2): 193–207

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Wardetzky.

Additional information

This work was supported by the DFG Research Center Matheon “Mathematics for key technologies” in Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hildebrandt, K., Polthier, K. & Wardetzky, M. On the convergence of metric and geometric properties of polyhedral surfaces. Geom Dedicata 123, 89–112 (2006). https://doi.org/10.1007/s10711-006-9109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-006-9109-5

Keywords

Mathematics Subject Classification (2000)

Navigation