Abstract
Let P = {1, 2, . . . , n} be a set of elements called participants. In this paper we construct a visual cryptography scheme (VCS) for the strong access structure specified by the set Γ0 of all minimal qualified sets, where \({\Gamma_0=\{S: S\subseteq P, 1\in S}\) and |S| = k}. Any VCS for this strong access structure is called a (k, n)*-VCS. We also obtain bounds for the optimal pixel expansion and optimal relative contrast for a (k, n)*-VCS.
Similar content being viewed by others
References
Adhikari A., Dutta T.K., Roy B.: A new black and white visual cryptographic scheme for a general access structures. In: INDOCRYPT 2004, Canteaut, A., Viswanathan, K. (eds.) LNCS, 3348, 399–413 (2004).
Ateniese G., Blundo C., Santis A.D., Stinson D.R.: Visual cryptography for general access structures. Inf. Comput. 129, 86–106 (1996)
Ateniese G., Blundo C., Santis A.D., Stinson D.R.: Construction and bounds for visual cryptography. In: Proc. ICALP 96, Springer, Berlin, pp. 416–428 (1996).
Blundo C., Bonis A.D., Santis A.D.: Improved scheme for visual cryptography. Des. Codes Cryptogr. 24, 255–278 (2001)
Blundo C., Cimato S., Santis A.D.: Visual cryptography scheme with optimal pixel expansion. Theoret. Comput. Sci. 369, 169–182 (2006)
Blundo C., Santis A.D., Stinson D.R.: On the contrast in visual cryptography schemes. J. Cryptol. 12(4), 261–289 (1999)
Bose M., Mukerjee R.: Optimal (k,n) visual cryptography schemes for general k. Des. Codes Cryptogr. 55, 19–35 (2010)
Droste S.: New results on visual cryptography. In: Koblitz N. (ed.) Advances in Cryptology-CRYPTO’ 96. Lecture Notes in Computer Science, vol. 1109, pp. 401–415. Springer, Berlin (1996).
Hofmeister T., Krause M., Simon H.U.: Contrast-optimal k out of n secret sharing schemes in visual cryptography. Theoret. Comput. Sci. 240, 471–485 (2000)
Krause M., Simon H.U.: Determining the optimal contrast for secret sharing schemes in visual cryptography. Comb. Probab. Comput. 12(3), 285–299 (2003).
Koga H., Ueda E.: Basic properties of (t,n)-threshold visual secret sharing scheme with perfect reconstruction of black pixels. Des. Codes Cryptogr. 40, 81–102 (2006)
Naor M., Shamir A.: Visual cryptography. In: De Santis A. (ed.) Advances in Cryptography-EUROCRYPT’ 94. Lecture Notes in Computer Science, vol. 950, pp. 1–12. Springer, Berlin (1995).
Verheul E.R., Van Tilborg H.C.A.: Constructions and properties of k out of n visual secret sharing schemes. Des. Codes Cryptogr. 11(2), 179–196 (1997).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by C. Cid.
Rights and permissions
About this article
Cite this article
Arumugam, S., Lakshmanan, R. & Nagar, A.K. On (k, n)*-visual cryptography scheme. Des. Codes Cryptogr. 71, 153–162 (2014). https://doi.org/10.1007/s10623-012-9722-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-012-9722-2