Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A hybrid cluster head selection model for Internet of Things

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Internet of Things (IoT) is one of the rising networking standards that gap between the physical world and the cyber. Energy conservation of IoT devices becomes a fundamental challenge for extending the life time of the network. As a solution to this challenge, cluster head selection can be used. This paper intends to adopt a hybrid model with both Moth Flame Optimization and Ant Lion Optimization (ALO) to improve the performance of cluster head selection among IoT devices in WSN–IoT network. The particular simulation approach not only preserves energy of the sensor node by maintaining distance and delay but also balances the temperature and load of IoT devices for attaining the optimal cluster head selection in WSN–IoT network. Further, it compares the performance of the proposed hybrid model over the traditional models like Artificial Bee Colony, Genetic Algorithm, Particle Swarm Optimization, Gravitational Search Algorithm, ALO, MFO and Adaptive GSA. The simulation analysis considers the convergence, sustainability of alive nodes, normalized energy, load, and temperature. Thus the proposed simulation results are more efficient for prolonging the life time of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Duan, J., Gao, D., Yang, D., Foh, C.H., Chen, H.H.: An energy-aware trust derivation scheme with game theoretic approach in wireless sensor networks for IoT applications. IEEE Internet Things J. 1(1), 58–69 (2014)

    Article  Google Scholar 

  2. Zhou, Z., Yao, B., Xing, R., Shu, L.: E-CARP: An energy efficient routing protocol for UWSNs in the Internet of underwater things. IEEE Sens. J. 16(11), 4072–4082 (2016)

    Article  Google Scholar 

  3. Qiu, T., Lv, Y., Xia, F., Chen, N., Wan, J., Tolba, A.: ERGID: an efficient routing protocol for emergency response Internet of Things. J. Netw. Comput. Appl. 72, 104–112 (2016)

    Article  Google Scholar 

  4. Lee, I.-G., Kim, M.: Interference-aware self-optimizing Wi-Fi for high efficiency Internet of Things in dense networks. Comput. Commun. 89–90(1), 60–74 (2016)

    Google Scholar 

  5. Qiu, T., Luo, D., Xia, F., Deonauth, N., Si, W., Tolba, A.: A greedy model with small world for improving the robustness of heterogeneous Internet of Things. Comput. Netw. 101, 127–143 (2016)

    Article  Google Scholar 

  6. Moosavi, S.R., Gia, T.N., Nigussie, E., Rahmani, A.M., Virtanen, S., Tenhunen, H., Isoaho, J.: End-to-end security scheme for mobility enabled healthcare Internet of Things. Future Gener. Comput. Syst. 64, 108–124 (2016)

    Article  Google Scholar 

  7. Di Marco, P., Athanasiou, G., Mekikis, P.-V., Fischione, C.: MAC-aware routing metrics for the internet of things. Comput. Commun. 74(15), 77–86 (2016)

    Article  Google Scholar 

  8. Frye, L., Cheng, L., Du, S., Bigrigg, M.W.: Topology maintenance of wireless sensor networks in node failure-prone environments. In: 2006 IEEE International Conference on Networking, Sensing and Control, Ft. Lauderdale, pp. 886–891 (2006)

  9. Ashraf, Q.M., Habaebi, M.H.: Autonomic schemes for threat mitigation in Internet of Things. J. Netw. Comput. Appl. 49, 112–127 (2015)

    Article  Google Scholar 

  10. Perera, C., Vasilakos, A.V.: A knowledge-based resource discovery for Internet of Things. Knowl. Based Syst. 109, 122–136 (2016)

    Article  Google Scholar 

  11. Dai, H., Xu, H.: Key predistribution approach in wireless sensor networks using LU matrix. IEEE Sens. J. 10(8), 1399–1409 (2010)

    Article  Google Scholar 

  12. Abusalah, L., Khokhar, A., Guizani, M.: A survey of secure mobile ad hoc routing protocols. IEEE Commun. Surv. Tutor. 10(4), 78–93 (2008)

    Article  Google Scholar 

  13. Zhong, S., Wu, F.: A collusion-resistant routing scheme for noncooperative wireless ad hoc networks. IEEE/ACM Trans. Netw. 18(2), 582–595 (2010)

    Article  Google Scholar 

  14. Li, C.Z., Hong, J., Xue, F., Shen, G.Q., Xu, X., Luo, L.: SWOT analysis and Internet of Things-enabled platform for prefabrication housing production in Hong Kong. Inf. Syst. 62, 29–41 (2016)

    Article  Google Scholar 

  15. Li, Z., Chen, R., Liu, L., Min, G.: Dynamic resource discovery based on preference and movement pattern similarity for large-scale social Internet of Things. IEEE Internet Things J. 3(4), 581–589 (2016)

    Article  Google Scholar 

  16. Wu, D., Bao, L., Liu, C.H.: Scalable channel allocation and access scheduling for wireless internet-of-things. IEEE Sens. J. 13(10), 3596–3604 (2013)

    Article  Google Scholar 

  17. Yachir, A., Amirat, Y., Chibani, A., Badache, N.: Event-aware framework for dynamic services discovery and selection in the context of ambient intelligence and Internet of Things. IEEE Trans. Autom. Sci. Eng. 13(1), 85–102 (2016)

    Article  Google Scholar 

  18. Zhang, D., Yang, L.T., Chen, M., Zhao, S., Guo, M., Zhang, Y.: Real-time locating systems using active RFID for Internet of Things. IEEE Syst. J. 10(3), 1226–1235 (2016)

    Article  Google Scholar 

  19. Kawamoto, Y., Nishiyama, H., Fadlullah, Z.M., Kato, N.: Effective data collection via satellite-routed sensor system (SRSS) to realize global-scaled Internet of Things. IEEE Sens. J. 13(10), 3645–3654 (2013)

    Article  Google Scholar 

  20. Kougianos, E., Mohanty, S.P., Coelho, G., Albalawi, U., Sundaravadivel, P.: Design of a high-performance system for secure image communication in the Internet of Things. IEEE Access 4, 1222–1242 (2016)

    Article  Google Scholar 

  21. Luo, S., Ren, B.: The monitoring and managing application of cloud computing based on Internet of Things. Comput. Methods Prog. Biomed. 130, 154–161 (2016)

    Article  Google Scholar 

  22. Liu, Y., Han, W., Zhang, Y., Li, L., Wang, J., Zheng, L.: An Internet-of-Things solution for food safety and quality control: a pilot project in China. J. Ind. Inf. Integr. 3, 1–7 (2016)

    Google Scholar 

  23. Park, H., Kim, H., Joo, H., Song, J.: Recent advancements in the Internet-of-Things related standards: a oneM2M perspective. ICT Express, September 2016

    Article  Google Scholar 

  24. Sivieri, A., Mottolaa, L., Cugola, G.: Building Internet of Things software with ELIoT. Comput. Commun. 89–90, 141–153 (2016)

    Article  Google Scholar 

  25. Karkouch, A., Mousannif, H., Moatassime, H.A., Noel, T.: Data quality in Internet of Things: a state-of-the-art survey. J. Netw. Comput. Appl. 73, 57–81 (2016)

    Article  Google Scholar 

  26. Zhu, T., Dhelim, S., Zhou, Z., Yang, S., Ning, H.: An architecture for aggregating information from distributed data nodes for industrial Internet of Things. Comput. Electr. Eng. 58, 337–349 (2016)

    Article  Google Scholar 

  27. Li, F., Han, Y., Jin, C.: Practical access control for sensor networks in the context of the Internet of Things. Comput. Commun. 89–90, 154–164 (2016)

    Article  Google Scholar 

  28. Cavalcante, E., Pereira, J., Alves, M.P., Maia, P., Moura, R., Batista, T., Delicato, F.C., Pires, P.F.: On the interplay of Internet of Things and cloud computing: a systematic mapping study. Comput. Commun. 89–90, 17–33 (2016)

    Article  Google Scholar 

  29. Hsu, C.-L., Lin, J.C.-C.: An empirical examination of consumer adoption of Internet of Things services: Network externalities and concern for information privacy perspectives. Comput. Hum. Behav. 62, 516–527 (2016)

    Article  Google Scholar 

  30. Raza, S., Misra, P., He, Z., Voigt, T.: Building the Internet of Things with bluetooth smart. Ad Hoc Netw. 57, 19–31 (2016)

    Article  Google Scholar 

  31. Coelho, L.D.S., Mariani, V.C., Tutkun, N., Alotto, P.: Magnetizer design based on a quasi-oppositional gravitational search algorithm. IEEE Trans. Magn. 50(2), 705–708 (2014)

    Article  Google Scholar 

  32. Nadakuditi, G., Sharma, V., Naresh, R.: Application of non-dominated sorting gravitational search algorithm with disruption operator for stochastic multiobjective short term hydrothermal scheduling. IET Gener. Transm. Distrib. 10(4), 862–872 (2016)

    Article  Google Scholar 

  33. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)

    Article  Google Scholar 

  34. Misra, G., Kumar, V., Agarwal, A., Agarwal, K.: Internet of Things (IoT)–a technological analysis and survey on vision, concepts, challenges, innovation directions, technologies, and applications (an upcoming or future generation computer communication system technology). Am. J. Electr. Electron. Eng. 4(01), 23–32 (2016)

    Article  Google Scholar 

  35. Agarwal, A., Misra, G., Agarwal, K.: The 5th generation mobile wireless networks–key concepts, network architecture and challenges. Am. J. Electr. Electron. Eng. 3(2), 22–28 (2015)

    Google Scholar 

  36. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  37. Ali, E.S., Abd Elazim, S.M., Abdelaziz, A.Y.: Ant lion optimization algorithm for renewable distributed generations. Energy 116, 445–458 (2016)

    Article  Google Scholar 

  38. Praveen Kumar Reddy, M., Rajasekhara Babu, M.: Energy efficient cluster head selection for Internet of Things. New Rev. Inf. Netw. 22(1), 54–70 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Praveen Kumar Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveen Kumar Reddy, M., Rajasekhara Babu, M. A hybrid cluster head selection model for Internet of Things. Cluster Comput 22 (Suppl 6), 13095–13107 (2019). https://doi.org/10.1007/s10586-017-1261-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1261-1

Keywords

Navigation