Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Lung cancer identification: a review on detection and classification

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Lung cancer is one of the most common diseases among humans and one of the major causes of growing mortality. Medical experts believe that diagnosing lung cancer in the early phase can reduce death with the illustration of lung nodule through computed tomography (CT) screening. Examining the vast amount of CT images can reduce the risk. However, the CT scan images incorporate a tremendous amount of information about nodules, and with an increasing number of images make their accurate assessment very challenging tasks for radiologists. Recently, various methods are evolved based on handcraft and learned approach to assist radiologists. In this paper, we reviewed different promising approaches developed in the computer-aided diagnosis (CAD) system to detect and classify the nodule through the analysis of CT images to provide radiologists’ assistance and present the comprehensive analysis of different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R., Torre, L., & Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries: Global Cancer Statistics 2018. CA: a Cancer Journal for Clinicians, 68.

  2. (2014). Advances in the early detection of lung cancer using analysis of volatile organic compounds: from imaging to sensors. Asian Pacific Journal of Cancer Prevention, 15(11), 4377–4384.

  3. Belinsky, S. A., Klinge, D. M., Dekker, J. D., Smith, M. W., Bocklage, T. J., Gilliland, F. D., Crowell, R. E., Karp, D. D., Stidley, C. A., & Picchi, M. A. (2005). Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clinical Cancer Research, 11(18), 6505–6511.

    Article  CAS  Google Scholar 

  4. Doria-Rose, V. P., Marcus, P. M., Szabo, E., Tockman, M. S., Melamed, M. R., & Prorok, P. C. (2009). Randomized controlled trials of the efficacy of lung cancer screening by sputum cytology revisited: a combined mortality analysis from the Johns Hopkins Lung Project and the Memorial Sloan-Kettering Lung Study. Cancer, 115(21), 5007–5017.

    Article  Google Scholar 

  5. Oken, M. M., Hocking, W. G., Kvale, P. A., Andriole, G. L., Buys, S. S., Church, T. R., Crawford, E. D., Fouad, M. N., Isaacs, C., Reding, D. J., Weissfeld, J. L., Yokochi, L. A., O’Brien, B., Ragard, L. R., Rathmell, J. M., Riley, T. L., Wright, P., Caparaso, N., Hu, P., Izmirlian, G., Pinsky, P. F., Prorok, P. C., Kramer, B. S., Miller, A. B., Gohagan, J. K., Berg, C. D., & for the PLCO Project Team. (2011). Screening by chest radiograph and lung cancer mortality: the prostate, lung, colorectal, and ovarian (PLCO) randomized trial. JAMA, 306(17), 1865–1873.

    Article  CAS  Google Scholar 

  6. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening. The New England Journal of Medicine, 365(5), 395–409.

  7. Shen, W., Zhou, M., Yang, F., Yu, D., Dong, D., Yang, C., Zang, Y., & Tian, J. (2016). Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognition, 61.

  8. Dhara, A. K., Mukhopadhyay, S., Dutta, A., Garg, M., & Khandelwal, N. (2016). A combination of shape and texture features for classification of pulmonary nodules in lung CT images. Journal of Digital Imaging, 29.

  9. Shen, W., Zhou, M., Yang, F., Yang, C., & Tian, J. (2015). Multi-scale convolutional neural networks for lung nodule classification BT - information processing in medical imaging, pp. 588–599

  10. Han, F., Wang, H., Zhang, G., Han, H., Song, B., Li, L., Moore, W., Lu, H., Zhao, H., & Liang, Z. (2014). Texture feature analysis for computer-aided diagnosis on pulmonary nodules. Journal of Digital Imaging, 28, 99–115.

    Article  Google Scholar 

  11. Wei, G., Cao, H., Ma, H., Qi, S., Qian, W., & Ma, Z. (2017). Content-based image retrieval for lung nodule classification using texture features and learned distance metric. Journal of Medical Systems, 42, 13.

    Article  Google Scholar 

  12. Wei, G., Ma, H., Qian, W., Han, F., Jiang, H., Qi, S., & Qiu, M. (Feb. 2018). Lung nodule classification using local kernel regression models with out-of-sample extension. Biomedical Signal Processing and Control, 40, 1–9.

    Article  CAS  Google Scholar 

  13. Sergeeva, M., Ryabchikov, I., Glaznev, M., & Gusarova, N. (2016). Classification of pulmonary nodules on computed tomography scans. Evaluation of the effectiveness of application of textural features extracted using wavelet transform of image,” in 2016 18th Conference of Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT), pp 291–299.

  14. Mao, K., & Deng, Z. (2016). Lung nodule image classification based on local difference pattern and combined classifier. Computational and Mathematical Methods in Medicine, 2016, 1091279.

    Article  Google Scholar 

  15. Li, X., Shen, L., & Luo, S. (2018). A solitary feature-based lung nodule detection approach for chest X-ray radiographs. IEEE Journal of Biomedical and Health Informatics, 22(2), 516–524.

    Article  Google Scholar 

  16. Boroczky, L., Zhao, L., & Lee, K. P. (2006). Feature subset selection for improving the performance of false positive reduction in lung nodule CAD. IEEE Transactions on Information Technology in Biomedicine, 10(3), 504–511.

    Article  Google Scholar 

  17. Sahu, P., Yu, D., Dasari, M., Hou, F., & Qin, H. (2019). A lightweight multi-section CNN for lung nodule classification and malignancy estimation. IEEE Journal of Biomedical and Health Informatics, 23(3), 960–968.

    Article  Google Scholar 

  18. Masood, A., Yang, P., Sheng, B., Li, H., Li, P., Qin, J., Lanfranchi, V., Kim, J., & Feng, D. D. (2020). Cloud-based automated clinical decision support system for detection and diagnosis of lung cancer in chest CT. IEEE Journal of Translational Engineering in Health and Medicine, 8, 1–13.

    Google Scholar 

  19. Nasrullah, D., Sang, J., Alam, M., Mateen, M., Cai, B., & Hu, H. (Aug. 2019). Automated lung nodule detection and classification using deep learning combined with multiple strategies. Sensors, 19, 3722.

    Article  Google Scholar 

  20. Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  21. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 25 (pp. 1097–1105). Curran Associates: Inc.

    Google Scholar 

  22. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv, 1409.1556.

  23. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1–9).

    Google Scholar 

  24. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770–778).

    Chapter  Google Scholar 

  25. Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. (2007 ). Densely Connected Convolutional Networks.

  26. Zeiler, M., & Fergus, R. (2013). Visualizing and Understanding Convolutional Neural Networks (Vol. 8689).

    Google Scholar 

  27. Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5987–5995).

    Chapter  Google Scholar 

  28. Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. (2015). Multi-view convolutional neural networks for 3D shape recognition.

    Book  Google Scholar 

  29. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). 3D ShapeNets: a deep representation for volumetric shapes. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1912–1920).

    Google Scholar 

  30. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: convolutional networks for biomedical image segmentation.

    Google Scholar 

  31. Cao, H., Liu, H., Song, E., Ma, G., Xu, X., Jin, R., Liu, T., & Hung, C. (2019). Multi-branch ensemble learning architecture based on 3D CNN for false positive reduction in lung nodule detection. IEEE Access, 7, 67380–67391.

    Article  Google Scholar 

  32. Han, C., Kitamura, Y., Kudo, A., Ichinose, A., Rundo, L., Furukawa, Y., Umemoto, K., Li, Y., & Nakayama, H. (2019). Synthesizing diverse lung nodules wherever massively: 3D multi-conditional GAN-based CT image augmentation for object detection. In 2019 International Conference on 3D Vision (3DV) (pp. 729–737).

    Chapter  Google Scholar 

  33. W. Zhu, C. Liu, W. Fan, and X. Xie, DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification. 2018.

    Google Scholar 

  34. Silva, G., Valente, T., Silva, A., Paiva, A., & Gattass, M. (2018). Convolutional neural network-based PSO for lung nodule false positive reduction on CT images. Computer Methods and Programs in Biomedicine, 162.

  35. Patrice, M., Qi, S., Xu, M., Han, F., Zhao, X., & Qian, W. (2018). CNN models discriminating between pulmonary micro-nodules and non-nodules from CT images. Biomedical Engineering Online, 17.

  36. Monkam, P., Qi, S., Xu, M., Li, H., Han, F., Teng, Y., & Qian, W. (2019). Ensemble learning of multiple-view 3D-CNNs model for micro-nodules identification in CT images. IEEE Access, 7, 5564–5576.

    Article  Google Scholar 

  37. Huang, X., Shan, J., & Vaidya, V. (2017). Lung nodule detection in CT using 3D convolutional neural networks,” in 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp 379–383.

  38. Jiang, H., Ma, H., Qian, W., Gao, M., & Li, Y. (2018). An automatic detection system of lung nodule based on multigroup patch-based deep learning network. IEEE Journal of Biomedical and Health Informatics, 22(4), 1227–1237.

    Article  Google Scholar 

  39. Setio, A. A. A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., van Riel, S. J., Wille, M. M. W., Naqibullah, M., Sánchez, C. I., & van Ginneken, B. (2016). Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Transactions on Medical Imaging, 35(5), 1160–1169.

    Article  Google Scholar 

  40. Song, Q., Zhao, L., Luo, X., & Dou, X. (2017). Using deep learning for classification of lung nodules on computed tomography images. Journal of Healthcare Engineering, 2017, 1–7.

    Article  Google Scholar 

  41. Bhandary, A., Prabhu, A., Rajinikanth, V., Krishnan, P., Satapathy, S., Robbins, D., Shasky, C., Zhang, Y.-D., Tavares, J., & Raja, N. (2020). Deep-learning framework to detect lung abnormality – a study with chest X-ray and lung CT scan images. Pattern Recognition Letters, 129, 271–278.

    Article  Google Scholar 

  42. Lin, C.-J., Shiou-Yun, J., & Chen, M.-K. (2020). Using 2D CNN with Taguchi parametric optimization for lung cancer recognition from CT images. Applied Sciences, 10, 2591.

    Article  CAS  Google Scholar 

  43. Togacar, M., Ergen, B., & Cömert, Z. (2019). Detection of lung cancer on chest CT images using minimum redundancy maximum relevance feature selection method with convolutional neural networks. Biocybernetics and Biomedical Engineering, 40.

  44. G. Silva, A. Silva, A. Paiva, and M. Gattass, Classification of malignancy of lung nodules in CT images using Convolutional Neural Network. 2020.

    Book  Google Scholar 

  45. Ren, Y., Tsai, M., Chen, L., Jing, W., Li, S., Liu, Y., Jia, X., & Shen, C. (2019). A manifold learning regularization approach to enhance 3D CT image-based lung nodule classification. International Journal of Computer Assisted Radiology and Surgery, 15.

  46. Kasinathan, G., Jayakumar, S., Gandomi, A., Manikandan, R., Fong, S., & Patan, R. (2019). Automated 3-D lung tumor detection and classification by an active contour model and CNN classifier. Expert Systems with Applications, 134.

  47. Zhao, X., Liu, L., Qi, S., Teng, Y., Li, J., & Qian, W. (2018). Agile convolutional neural network for pulmonary nodule classification using CT images. International Journal of Computer Assisted Radiology and Surgery, 13.

  48. Masood, A., Sheng, B., Li, P., Hou, X., Wei, X., Qin, J., & Feng, D. (2018). Computer-assisted decision support system in pulmonary cancer detection and stage classification on CT images. Journal of Biomedical Informatics, 79.

  49. Nishio, M., Sugiyama, O., Yakami, M., Ueno, S., Kubo, T., Kuroda, T., & Togashi, K. (2018). Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS One, 13, e0200721.

    Article  Google Scholar 

  50. Alakwaa, W., Nassef, M., & Badr, A. (2017). Lung cancer detection and classification with 3D convolutional neural network (3D-CNN). International Journal of Advanced Computer Science and Applications, 8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh Kumar Thakur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S.K., Singh, D.P. & Choudhary, J. Lung cancer identification: a review on detection and classification. Cancer Metastasis Rev 39, 989–998 (2020). https://doi.org/10.1007/s10555-020-09901-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09901-x

Keywords

Navigation