Abstract
Plants are subjected to several abiotic stresses that adversely affect growth, metabolism and yield. The dynamic research in plant genetics complemented by genome sequencing has opened up avenues to address multiple problems caused by abiotic stresses. Though many drought-induced genes have been phytoengineered in a wide range of plants, the drought signal transduction pathways, and the alteration of plant sensing and signaling systems to adverse environments still remain an intriguing subject for comprehensive investigation. To impart enhanced drought tolerance in plants, a thorough perception of physiological, biochemical and gene regulatory networks is essential. Recent functional genomics tools have facilitated the progress in our understanding of stress signaling and of the linked molecular regulatory networks. This has revealed several stress-inducible genes and various transcription and signaling factors that regulate the drought stress-inducible systems. Translational genomics of these drought specific genes using model plants have provided encouraging outcomes, but the in-depth knowledge of the specific roles of various metabolites in plant stress tolerance will lead to evolvement of strategies for the phytoengineering of drought tolerance in plants in future.
Similar content being viewed by others
Abbreviations
- ABA:
-
abscisic acid
- ABF:
-
ABRE binding factor
- ADC:
-
arginine decarboxylase
- ALR:
-
aldose/aldehyde reductase
- ATAF1,2:
-
Arabidopsis transcription factor1 or 2 like family
- AVP1:
-
H+-pyrophosphatase
- Chl:
-
chlorophyll
- Chl-NADP-ME:
-
chlorophyll-targeting NADP-malic enzyme
- COX:
-
choline oxidase
- DREB2:
-
drought responsive element binding protein 2
- E:
-
transpiration rate
- ERF:
-
ethylene responsive factor
- GolS:
-
galactinolsynthase
- GR:
-
glutathionereductase
- gs :
-
stomatal conductance
- MT:
-
methyltransferase
- mtlD:
-
mannitol-1-phosphate dehydrogenase
- NCED:
-
9-cis-epoxycarotenoid dioxygenase
- OA:
-
osmotic adjustment
- P5CS:
-
Δ1-pyrroline-5-carboxylate synthase
- PEPC:
-
phosphoenolpyruvate carboxylase
- PN:
-
net photosynthetic rate
- Rubisco:
-
ribulose-1,5-bisphosphate carboxylase/oxygenase
- RWC:
-
relative water content
- TPP:
-
trehalose-6-phosphate phosphatase
- ψp :
-
pressure potential
- ψs :
-
osmotic potential
- ψw :
-
water potential
References
Agarwal, P.K., Jha, B.: Transcription factors in plants and ABA dependent and independent abiotic stress signaling. — Biol. Plant. 54: 201–212, 2010.
Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., Van Arkel, G., Pereira, A.: The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when over expressed in Arabidopsis. — Plant Cell 16: 2463–2480, 2004.
Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.
Ashraf, M.: Inducing drought tolerance in plants: recent advances. — Biotechnol. Adv. 28: 169–183, 2010.
Assmann, S.M., Simoncini, L., Schroeder, J.L.: Blue light activates electrogenic ion pumping in guard cell protoplasts in Vicia faba L. — Nature 318: 285–287, 1985.
Bartels, D., Sunkar, R.: Drought and salt tolerance in plants. — Crit. Rev. Plant Sci. 24: 23–58, 2005.
Batistic, O., Kudla, J.: Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. — Planta 219: 915–924, 2004.
Boudsocq, M., Barbier-Brygoo, H., Lauriere, C.: Identification of nineSNF1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. — J. biol. Chem. 279: 41758–41766, 2004.
Boudsocq, M., Lauriere, C.: Osmotic signaling in plants: multiple pathways mediated by emerging kinase families. — Plant Physiol. 138: 1185–1194, 2005.
Boyer, J.S.: Plant productivity and environment. — Science 218: 443–448, 1982.
Boyer, J.S, Wong, S.C., Farquhar, G.D.: CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials. — Plant Physiol. 114: 185–191, 1997.
Cai, Y.F., Zhang, S.B., Hu, H., Li, S.Y.: Photosynthetic performance and acclimation of Incarvillea delavayi to water stress. — Biol. Plant. 54: 89–96, 2010.
Campos-Alvarez, F., Cruz-Garcia, F., Torres-Espinosa, A., Sanchez-Jimenez, M., Colmenero-Flores, J.M., Smith-Espinoza, C.: Expression of late embryogenesis abundant (LEA) proteins codifying genes during osmopriming of maize and bean seeds. — Agrociencia 36: 461–470, 2002.
Chaitanya, K.V., Masilamani, S., Jutur, P.P., Ramachandra Reddy, A.: Variation in photosynthetic rates and biomass productivity among four mulberry cultivars. — Photosynthetica 40: 305–308, 2002.
Chaitanya, K.V., Sundar, D., Jutur, P.P., Ramachandra Reddy, A.: Water stress effects on photosynthesis in different mulberry cultivars. — Plant Growth Regul. 40: 75–80, 2003.
Chaves, M.M., Maroco, J.P., Periera A.S.: Understanding plant responses to drought from genes to the whole plant. — Funct. Plant Biol. 30: 239–264, 2003.
Chen, M., Wang, Q.Y., Cheng, X.G., Xu, Z.S., Li, L.C., Ye, X.G., Xia, L.Q., Ma, Y.Z.: GmDREB2, a soybean DREbinding transcription factor, conferred drought and high-salt tolerance in transgenic plants. — Biochem. biophys. Res. Commun. 353: 299–305, 2007.
Cheng, L., Huan, S., Sheng, Y., Hua, X., Shu, Q., Song, S.J.X.: GMCHI, cloned from soybean (Glycine max (L.) Merr.) enhances survival in transgenic Arabidopsis under abiotic stress. — Plant Cell Rep. 28: 145–153, 2009.
Cheong, Y.H., Kim, K.N., Pandey, G.K., Gupta, R., Grant, J.J., Luan, S.: CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. — Plant Cell 15: 1833–1845, 2003.
Chinnusamy, V., Schumaker, K., Zhu, J.K.: Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. — J. exp. Bot. 55: 225–236, 2004.
Clement, M., Lambert, A., Herouart, D., Boncompagni, E.: Identification of new up-regulated genes under drought stress in soybean nodules. — Gene 426: 15–22, 2008.
Cominelli, E., Galbiati, M., Vavasseur, A., Conti, L., Sala, T., Vuylsteke, M., Leonhardt, N., Dellaporta, S.L, Tonelli, C.: A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. — Curr. Biol. 15: 1196–1200, 2005.
Cornic, G.: Drought stress inhibits photosynthesis by decreasing stomatal aperture not by affecting ATP synthesis. — Trends Plant Sci. 5: 187–188, 2000.
Davies, J.P., Yildiz, F.H., Grossman, A.R.: Sac3, an Snf1-like serine/threonine kinase that positively and negatively regulates the responses of Chlamydomonas to sulfur limitation. — Plant Cell 11: 1179–1190, 1999.
Ebel, J., Cosio, E.G.: Elicitors of plant defense responses. — Int. Rev. Cytol. 148: 1–36, 1994.
Fowler, S., Thomashow, M.F.: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. — Plant Cell 14: 1675–1690, 2002.
Fujii, H., Verslues, P.E., Zhu, J.: Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. — Plant Cell 19: 485–494, 2007.
Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K.: Abscisic aciddependent multisite phosphorylation regulates the activity of a transcription activator AtDREB1. — Proc. nat. Acad. Sci. USA 103: 1988–1993, 2006.
Garay-Arroyo, A., Colmenero-Flores, J.M., Garciarrubio, A., Covarrubias, A.: Highly hydrophilic proteins in prokaryotes and eukaryotes are common during condition of water deficit. — J. biol. Chem. 275: 5668–5674, 2000.
Gong, D., Guo, Y., Schumaker, K.S., Zhu, J.K.: The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. — Plant Physiol. 134: 919–926, 2004.
Gong, D., Zhang, C., Chen, X., Gong, Z., Zhu, J.K.: Constitutive activation and transgenic evaluation of the function of an Arabidopsis PKS protein kinase. — J. biol. Chem 277: 42088–42096, 2002.
Gong, P., Zhang, J., Li, H., Yang, C., Zhang, C., Zhang, X., Khurram, Z., Zhang, Y., Wang, T., Fei, Z., Ye, Z.: Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. — J. exp. Bot. 61: 3563–3575, 2010.
Goyal, K., Walton, L.J., Tunnacliffe, A.: LEA proteins prevent protein aggregation due to water stress — Biochemistry 388: 151–157, 2005.
Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., Korff, M.V., Varshney, R.K., Graner, A., Valkoun, J.: Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. — J. exp. Bot. 60: 3531–3544, 2009.
Guo, Y., Halfter, U., Ishitani, M., Zhu, J.-K.: Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. — Plant Cell 13: 1383–1400, 2001.
Hajheidari, M., Abdollahian-Noghabi, M., Askari, H., Heidai, M., Sadeghian, S.Y., Ober, E.S., Salekdeh, G.H.: Proteome analysis of sugar beet leaves under drought stress. — Proteomics 5: 950–960, 2005.
Harmon, A.C., Gribskov, M., Gubrium, E., Harper, J.F.: The CDPK superfamily of protein kinase. — New Phytol. 151: 175–183, 2001.
Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J.: Plant cellular and molecular responses to high salinity. — Annu. Rev. Plant Physiol. Plant mol.Biol. 51: 463–499, 2000.
Haupt-Herting, S., Fock. H.P.: Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photosynthesis. — Ann. Bot. 89: 851–859, 2002.
Hossain, M.D., Chob, J., Hanb, M., Ahna, C.H., Jeon, J.S., An, G., Park, P.B.: The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. — J. Plant Physiol. 167: 1512–1520, 2010.
Hrabak, E.M., Chan, C.W., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R.: The Arabidopsis CDPK-SnRK super family of protein kinases. — Plant Physiol. 132: 666–680, 2003.
Hu, H., You, J., Fang, Y., Zhu, X., Qi, Z., Xiong, L.: Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. — Plant mol. Biol. 67: 169–181, 2008.
Hu, W.H., Xiao, Y.A., Zeng, J.J., Hu, X.Y.: Photosynthesis, respiration and antioxidant enzymes in pepper leaves under drought and heat stresses. — Biol. Plant. 54: 761–765, 2010a.
Hu, X.J., Zhang, Z.B., Xu, P., Fu, Z.Y., Hu, S.B., Song, W.Y.: Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses. — Biol. Plant. 54: 213–223, 2010b.
Ingram, J., Bartels, D.: The molecular basis of dehydration tolerance in plants. — Annu. Rev. Plant Physiol. 47: 377–403, 1996.
Johnson, R.C., Mornhinweg, D.W., Ferris, D.M., Heithol, J.J.: Leaf photosynthesis and conductance of selected Triticum species at different water potentials. — Plant Physiol. 83: 1014–1017, 1987.
Kagaya, Y., Hobo, T., Murata, M., Ban, A., Hattori, T.: Abscisic acid induce transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. — Plant Cell. 14: 3177–3189, 2002.
Kam, J., Gresshoff, P.M., Shorter, R., Xue, G.P.: The Q-type C2H2 zinc finger subfamily of transcription factors in Triticum aestivum is predominantly expressed in roots and enriched with members containing an EAR repressor motif and responsive to drought stress. — Plant mol. Biol. 67: 305–322, 2008.
Kasuga, M., Liu, Q., Miura, S., Yamaguchi, S., Shinozaki, K.: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. — Nat. Biotechnol. 17: 287–291, 1999.
Kasuga, M., Miura, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: A combination of the Arabidopsis DREB1A gene and stress inducible rd29A promoter improved drought and low temperature stress tolerance in tobacco by gene transfer. — Plant Cell Physiol. 45: 346–350, 2004.
Kiani, S.P., Tália, P., Maury, P., Grieu, P., Heinz, R., Perrault, A., Nishinakamasu, V., Hopp, E., Gentzbittel, L., Paniego, N., Sarrafi, A.: Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. — Plant Sci. 172: 773–787, 2007.
Kobayashi, F., Maeta, E., Terashima, A., Kawaura, K., Ogihara, Y., Takumi, S.: Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. — J. exp. Bot. 59: 891–905, 2008.
Kobayashi, Y., Yamamoto, S., Minami, H., Kagaya, Y., Hattori, T.: Differential activation of the rice sucrose nonfermenting1-related protein kinase 2 family by hyperosmotic stress and abscisic acid. — Plant Cell 16: 1163–1177, 2004.
Kolukisaoglu, U., Weinl, S., Blazevic, D., Batistic, O., Kudla, J.: Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. — Plant Physiol. 134: 43–58, 2004.
Kramer, P.J.: Plant Water Relations. — Academic Press, New York 1983.
Krugman, T., Chagué, V., Peleg, Z., Balzergue, S., Just, J., Korol, A.B., Nevo, E., Saranga, Y., Chalhoub, B., Fahima, T.: Multilevel regulation and signaling processes associated with adaptation to terminal drought in wild emmer wheat. — Funct. Integr. Genomics 10: 167–186, 2010.
Kumar, S.G., Mattareddy, A., Sudhakar, C.: NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. — Plant Sci. 165: 1245–1251, 2003.
Larsson, K.E., Nyström, B., Liljenberg, C.: A phosphatidylserine decarboxylase activity in root cells of oat (Avena sativa) is involved in altering membrane phospholipid composition during drought stress acclimation. — Plant Physiol. Biochem. 44: 211–219, 2006.
Lata, C., Sahu, P.P., Prasad, M.: Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. — Biochem. biophys. Res. Commun. 393: 720–727, 2010.
Lawlor, D.W., Cornic, G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. — Plant Cell Environ. 25: 275–294, 2002.
Lawson, T., Oxborough, K., Morison, J.I.L., Baker, N.R.: The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar. — J. exp. Bot. 54: 1743–1752, 2003.
Li, J., Wang, X.Q., Watson, M.B., Assmann, S.M.: Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. — Science 287: 300–303, 2000.
Ludlow, M.M., Muchow, R.C.: A critical evaluation of traits for improving crop yields in water-limited environments. — Adv. Agron. 43: 107–153, 1990.
Maheswari, M., Varalaxmi, Y., Vijayalakshmi, A., Yadav, S.K., Sharmila, P., Venkateswaswarul, B., Vanaja, M., Paradha Saradhi, P.: Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. — Biol. Plant. 54: 647–652, 2010.
Manavalan, L.P., Guttikonda, S.K., Tran, L.S.P., Nguyen, H.T.: Physiological and molecular approaches to improve drought resistance in soybean. — Plant Cell Physiol. 50: 1260–1276, 2009.
Markandeya, G., Babu, P.R., Lachagari, V.B.R., Reddy, A.M.M., Ramakrishna, W., Jeffrey, L.B., Reddy, A.R.: Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from droughtstressed seedlings. — J. exp. Bot. 58: 253–265, 2007.
Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. — Plant J. 38: 982–993, 2004.
Meyer, S., Genty, B.: Heterogenous inhibition of photosynthesis over the leaf surface of Rosa rubinosa L. during water stress and abscisic acid treatment induction of a metabolic component by limitation of CO2 diffusion. — Planta 210: 126–131, 1999.
Mikolajczyk, M., Awotunde, O.S., Muszynska, G., Klessig, D.F., Dobrowolska, G.: Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. — Plant Cell 12: 165–178, 2000.
Miller, G., Suzuki, N., Ciftci-Yilmazi, S., Mittler, R.: Reactive oxygen species homeostasis and signaling during drought and salinity stresses. — Plant Cell Environ. 33: 453–467, 2010.
Molina, C., Rotter, B., Horres, R., Udupa, S.M., Besser, B., Bellarmino, L., Baum, M.M., Matsumura, H., Terauchi, R., Kahl, G., Winter, P.: SuperSAGE: the drought stressresponsive transcriptome of chickpea roots. — BMC Genomics 9: 553–579, 2008.
Morgan, J.M.: Osmoregulation and water stress in higher plants. — Annu. Rev. Plant Physiol. 35: 299–319, 1984.
Muoma, J., Ombori, O., Jesse, M.: Signal transduction one of the current molecular approaches in the management of drought stress in the sub-saharan region. — Biotechnology 9: 469–476, 2010.
Mustilli, A.C., Merlot, S., Vavasseur, A., Fenzi, F., Giraudat, J.: Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. — Plant Cell 14: 3089–3099, 2002.
Nadarajah, K., Sidek, H.M.: The green MAPKS. — Asian J. Plant Sci. 9:1–10, 2010.
Nakagami, H., Pitzschke, A., Hirt, H.: Emerging MAP kinase pathways in plant stress signaling. — Trends Plant Sci. 10: 339–346, 2005.
Nakashima, K., Tran, L.-S.P., Nguyen, V.D., Fujita, M., Maruyama, K., Todaka, D., Ito, Y., Hayashi, N., Shinozaki, K., Yamaguchi-Shinozaki, K.: Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. — Plant J. 51: 617–630, 2007.
Ober, E.S., Le Bloa, M., Clark, C.J.A, Roya, A., Jaggard, K.W., Pidgeon, J.D.: Evaluation of physiological traits as indirect selection criteria for drought tolerance in sugarbeet. — Field Crop Res. 91: 231–249, 2005.
Oksman-Caldentey, K.M., Saito, K.: Integrating genomics and metabolomics for engineering plant metabolic pathways. — Curr. Opin. Biotechnol. 16: 174–179, 2005.
Park, S.H., Zarrinpar, A., Lim, W.A. Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. — Science 299: 1061–1064, 2003.
Parry, M.A.J., Andraloj, P.J., Khan, S., Lea, P.J., Keys, A.J.: Rubisco activity: effects of drought stress. — Ann. Bot. 89: 833–839, 2002.
Posas, F., Saito, H.: Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. — Science 276: 1702–1705, 1997.
Ramachandra Reddy, A.: Fructose-2, 6 bisphosphate modulated photosynthesis in sorghum leaves grown under low water regimes. — Phytochemistry 43: 319–322, 1996.
Reiser, V., Ruis, H., Ammerer, G.: Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. — Mol. biol. Cell 10: 1147–1161, 1999.
Rodríguez, M., Canales, E., Carlos, J., Borroto, E.C., López, J., Pujol, M., Borrás-Hidalgo, O.: Identification of genes induced upon water-deficit stress in a drought-tolerant rice cultivar. — J. Plant Physiol. 163: 577–584, 2006.
Sairam, R.K., Veerbhadra, R.K., Srivastava, G.C.: Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. — Plant Sci. 163: 1037–1046, 2002.
Schafleitner, R., Gutierrez Rosales, R.O., Gaudin, A., Alvarado Aliaga, C.A., Martinez, G.N., Tincopa Marca, L.R., Bolivar, L.A., Delgado, F.M., Simon, R., Bonierbale, M.: Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. — Plant Physiol. Biochem. 45: 673–690, 2007.
Schroeder, J.I., Kwak, J.M., Allen, G.J.: Guard cell abscisic acid signaling and engineering drought hardiness in plants. — Nature 410: 327–330, 2001.
Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., Shinozaki, K.: Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. — Plant Cell 13: 61–72, 2001.
Sengupta, A., Berkowitz, G.A.: Chloroplast osmotic adjustment and water stress effects on photosynthesis. — Plant Physiol. 88: 200–206, 1988.
Serrano, E.E., Zeiger, E., Hagiwara, S.: Red light stimulates an electrogenic proton pump in Vicia faba L. guard cell protoplasts. — Proc. nat. Acad. Sci. USA 85: 436–440, 1988.
Serrano, R., Gaxiola, R., Rios, G., Forment, J., Vicente, O.R.: Salt stress proteins identified by a functional approach in yeast. — Monatshefts Chemie 134: 1445–1464, 2003.
Shao, H.B., Song, W.Y., Chu, L.Y.: Advances of calcium signals involved in plant anti-drought. — Crit. Rev. Biol. 331: 587–596, 2008.
Shinozaki, K., Yamaguchi-Shinozaki, K., Seki, M.: Regulatory network of gene expression in the drought and cold stress responses. — Curr. Opin. Plant Biol. 6: 410–417, 2003.
Sunkar, R., Bartels, D., Kirch, H.H.: Overexpression of a stressinducible dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. — Plant J. 35: 452–464, 2003.
Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K., Shinozaki, K.: Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. — Plant J. 29: 417–426, 2002.
Tezara, W., Mitchall, V., Driscoll, S.P., Lawlor, D.W.: Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. — J. exp. Bot. 375: 1781–1791, 2002.
Tezara, W., Mitchel, V., Driscoll, S.D., Lawlor, D.W.: Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. — Nature 1401: 914–917, 1999.
Thippeswamy, M., Chandraobulreddy, P., Sinilal, B., Shivakumar, M., Dudhakar, C.: Proline accumulation and the expression of δ1-pyrroline-5-carboxylate synthetase in two safflower cultivars. — Biol. Plant. 54: 386–390, 2010.
Tuteja, N., Mahajan, S.: Calcium signaling network in plants-an overview. — Plant Signal. Behavior 2: 79–85, 2007.
Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. — Curr. Opin. Biotechnol. 17: 113–122, 2006.
Umezawa, T., Yoshida, R., Maruyama, K., Yamaguchi-Shinozaki, K., Shinozaki, K.: SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. — Proc. nat. Acad. Sci. USA 101: 17306–17311, 2004.
Upadhyay, H., Panda, S.K.: Responses of Camellia sinensis to drought and rehydration. — Biol. Plant. 48: 597–600, 2004.
Upadhyay, H., Panda, S.K., Dutta, B.K.: Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. — Acta Physiol. Plant 30: 457–468, 2008.
Upadhyay, H., Panda, S.K., Dutta, B.K.: CaCl2 improves postdrought recovery potential in Camellia sinensis (L) O. Kuntze. — Plant Cell Rep. 30: 495–503, 2011.
Urano, K., Maruyama, K., Ogata, Y., Morishita, Y., Takeda, M., Sakurai, N., Suzuki, H., Saito, K., Shibata, D., Kobayashi, M., Yamaguchi-Shinozaki, K., Shinozaki, K.: Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. — Plant J. 57: 1065–1078, 2009.
Valliyodan, B., Nguyen, H.T.: Understanding regulatory networks and engineering for enhanced drought tolerance in plants. — Curr. Opin. Plant Biol. 9: 189–195, 2006.
Vinocur, B., Altman, A.: Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. — Curr. Opin. Biotechnol. 16: 123–132, 2005.
Wang, W., Vinocur, B., Altman, A.: Plant responses to drought, salinity and extreme temperatures towards genetic engineering for stress tolerance. — Planta 218: 1–14, 2003.
Wang, W.X., Vinocur, B., Shoseyov, O., Altman, A.: Biotechnology of plant osmotic stress tolerance: physiological and molecular consideration. — Acta Hort. 560: 285–292, 2001.
Wang, Y., Ying, J., Kuzma, M., Chalifoux, M., Sample, A., McArthur, C., Uchacz, T., Sarvas, C., Wan, J., Dennis, D.T.: Molecular tailoring of farnesylation for plant drought tolerance and yield protection. — Plant J. 43: 413–424, 2005.
Wise, M.J.: Leaping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. — BMC Bioinformatics 4: 52, 2003.
Wise, M.J., Tunnacliffe, A.: POPP the question: what do LEA proteins do? — Trends Plant Sci. 9: 13–17, 2004.
Xiong, L., Schumaker, K.S., Zhu, J.K.: Cell signaling during cold, drought and salt stress. — Plant Cell: S165-S183, 2002.
Yamaguchi-Shinozaki, K., Shinozaki, K.: Organization of cisactin regulatory elements in osmotic- and cold-stressresponsive promoters. — Trends Plant Sci. 10: 88–94, 2005.
Yancy, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., Somero, G.N.: Living with water stress: evolution of osmolyte systems. — Science 217: 1214–1223, 1982.
Yoshida, R., Hobo, T., Ichimura, K., Mizoguchi, T., Takahashi, F., Aronso, J., Ecker, J.R., Shinozaki, K.: ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. — Plant Cell Physiol. 43: 1473–1483, 2002.
Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, F., Takahashi, S., Shinozaki, K.: The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates ABA and osmotic stress signals controlling stomatal closure in Arabidopsis. — J. biol. Chem. 281: 5310–5318, 2006.
Zeevaart, J.A.D., Creelman, R.A.: Metabolism and physiology of abscisic acid. — Annu. Rev. Plant Physiol. 39: 439–473, 1988.
Zhang, G., Chen, M., Chen, X., Xu, Z., Guan, S., Li, L.C.: Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). — J. exp. Bot. 59: 4905–4917, 2008.
Zhang, J.Y., Broeckling, C.D., Blancaflor, E.B., Sledge, M.K., Sumner, L.W., Wang, Z.Y.: Over expression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa) — Plant J. 42: 689–707, 2005.
Zhang, J.Z.: Overexpression analysis of plant transcription factors. — Curr. Opin. Plant Biol. 6: 430–440, 2003.
Zhang, R.Y., Zhao, X.U., Li, L.C., Chen, M., You, M.A.: Isolation and expression analysis of a novel abiotic stressinduced gene W89 from wheat. — Agr. Sci. 6: 391–398, 2007.
Zhang, X., Wang, T., Li, C.: Different responses of two contrasting wheat genotypes to abscisic acid application. — Biol. Plant. 49: 613–616, 2005.
Zheng, J., Fu, J., Gou, M., Huai, H., Liu, Y., Jian, M., Huang, Q., Guo, X., Dong, Z., Wang, H., Wang, G.: Genome-wide transcriptome analysis of two maize inbred lines under drought stress. — Plant mol. Biol. 72: 407–421, 2010.
Zheng, X., Chen, B., Lu, G., Han, B.: Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. — Biochem. biophys. Res. Commun. 379: 985–989, 2009.
Zhu, J.K.: Salt and drought stress signal transduction in plants. — Annu. Rev. Plant Biol. 53: 247–273, 2002.
Acknowledgements
GT and MD thanks Department of Biotechnology (Program Support) and University Grant Commission (UGC), Government of India respectively for fellowship. LS acknowledge funding from Department of Biotechnology, Government of India (Grant No. BT/01/NE/PS/08).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Thapa, G., Dey, M., Sahoo, L. et al. An insight into the drought stress induced alterations in plants. Biol Plant 55, 603 (2011). https://doi.org/10.1007/s10535-011-0158-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10535-011-0158-8