Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On a queueing-inventory with reservation, cancellation, common life time and retrial

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we model a queueing-inventory system that has applications in railway and airline reservation systems. Maximum items in the inventory is \(S\) which have a random common life time; this includes those that are sold in particular cycle. A customer, on arrival to an idle server with at least one item in inventory, is immediately taken for service; or else he joins the buffer of maximum size \(S\) depending on number of items in the inventory (the buffer capacity varies and is, at any time, equal to the number of items in the inventory). The arrival of customers constitutes a Poisson process, demanding exactly one item each from the inventory. If there is no item in the inventory, the arriving customer first queue up in a finite waiting space of capacity \(K\). When it overflows an arrival goes to an orbit of infinite capacity with probability \(p\) or is lost forever with probability \(1-p\). From the orbit he retries for service according to an exponentially distributed inter-occurrence time. The service time follows an exponential distribution. Cancellation of sold items before its expiry is permitted. Inventory gets added through cancellation of purchased items, until the expiry time. Cancellation time is assumed to be negligible. We analyze this system. Several performance characteristics are computed; expected sojourn time of the system in a cycle with “no inventory” and also “maximum inventory” are computed. Some illustrative numerical examples are presented. An optimization problem is numerically analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Artalejo, J. R., & Gomez Corral, A. (2008). Retrial queueing systems. A computational approach. Berlin: Springer.

    Book  Google Scholar 

  • Bakker, M., Riezebos, J., & Teunter, R. H. (2012). Review of inventory systems with deterioration since 2001. European Journal of Operation Research, 221, 275–284.

    Article  Google Scholar 

  • Berman, O., & Sapna, K. P. (2002). Optimal service rates of a service facility with perishable inventory items. Naval Research Logistic, 49, 464–482.

    Article  Google Scholar 

  • Deepak, T. G., Joshua, V. C., & Krishnamoorthy, A. (2004). Queues with postponed work. TOP—Spanish Journal of Statistics and Operational Research, 12, 375–398.

    Google Scholar 

  • Krishnamoorthy, A., Gopakumar, B., & Narayanan, V. C. (2009). A queueing model with interruption resumption/restart and reneging. Bulletin of Kerala Mathematics Association (Special Issue: Guest Editor: S. R. S. Varadhan FRS) 29–45.

  • Krishnamoorthy, A., Lakshmy, B., & Manikandan, R. (2011). A survey on inventory models with positive service time. OPEARCH, 48(2), 153–169.

    Article  Google Scholar 

  • Lian, Z., Liu, L., & Neuts, M. F. (2005). A discrete-time model for common lifetime inventory systems. Mathematics of Operation Research, 30(3), 718–732.

    Article  Google Scholar 

  • Manikandan, R. (2014). Investigations on stochastic storage systems with positive service time. Ph.D. thesis. Cochin: Cochin University of Science & Technology.

  • Manuel, P., Sivakumar, B., & Arivarignan, G. (2008). A perishable inventory system with service facilities and retrial customers. Computers & Industrial Engineering, 54, 484–501.

    Article  Google Scholar 

  • Nahmias, S., & Demmy, S. (1981). Operating characteristics of an inventory system with rationing. Management Science, 27(11), 1236–1245.

    Article  Google Scholar 

  • Neuts, M. F. (1981). Matrix-geometric solutions in stochastic models: An algorithmic approach. Baltimore: The Johns Hopkins University Press (1994 version is Dover Edition).

  • Neuts, M. F. (1989). Structured stochastic matrices of M/G/1 type and their applications. New York: Marcel Dekker.

    Google Scholar 

  • Saffari, M., Asmussen, S., & Haji, R. (2013). The M/M/1 queue with inventory, lost sale and general lead times. Queueing Systems. doi:10.1007/s11134-012-9337-3.

  • Sapna Isotupa, K. P. (2013). Cost analysis of an \((S-1, S)\) inventory system with two demand classes and rationing. Annals of Operations Research. doi:10.1007/s9-013-1407-3.

  • Schwarz, M., & Daduna, H. (2006). Queueing systems with inventory management with random lead times and with backordering. Mathematical Methods of Operations Research, 64, 383–414.

    Article  Google Scholar 

  • Schwarz, M., Sauer, C., Daduna, H., Kulik, R., & Szekli, R. (2006). M/M/1 queueing systems with inventory. Queueing Systems, 54, 55–78.

    Article  Google Scholar 

  • Schwarz, M., Wichelhaus, C., & Daduna, H. (2007). Product form models for queueing networks with an inventory. Stochastic Models, 23(4), 627–663.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the referee(s) for their critical comments which helped in improving the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Krishnamoorthy.

Additional information

Dedicated to the memory of Prof. J. R. Artalejo. First and second author’s research supported by Kerala State Council for Science, Technology & Environment (No. 001/KESS/2013/CSTE).

Appendices

Appendix 1

Sub-matrices are

$$\begin{aligned} H_0= & {} \left[ {\begin{array}{*{20}c} {h_0^0 } &{}\quad {h_{01}^0 } &{}\quad {} &{}\quad {} &{}\quad {} {} \\ {h_{10}^0 } &{}\quad {h_1^0 } &{}\quad {h_{12}^0 } &{}\quad {} &{}\quad {} {} \\ {} &{}\quad {} \ddots &{}\quad \ddots &{}\quad \ddots &{}\quad {} \\ {} &{}\quad {} &{}\quad {h_{S - 1S - 2}^0 } &{}\quad {h_{S - 1}^0 } &{}\quad {h_{S - 1S}^0 } \\ {} &{}\quad {} {} &{}\quad {} &{}\quad {h_{SS - 1}^0 } &{}\quad {h_S^0 } \\ \end{array}} \right] ,\\ H'_0= & {} \left[ {\begin{array}{*{20}c} {h_0^0 } &{}\quad {h_{01}^0 } &{}\quad {} &{}\quad {} &{}\quad {} {} \\ {h_{10}^0 } &{}\quad {h_1^{'0} } &{}\quad {h_{12}^0 } &{}\quad {} &{}\quad {} {} \\ {} &{}\quad {} \ddots &{}\quad \ddots &{}\quad \ddots &{}\quad {} \\ {} &{}\quad {} &{}\quad {h_{S - 1S - 2}^0 } &{}\quad {h_{S - 1}^{'0} } &{}\quad {h_{S - 1S}^0 } \\ {} &{}\quad {} &{}\quad {} &{}\quad {h_{SS - 1}^0 } &{}\quad {h_S^{'0} } \\ \end{array}} \right] , \end{aligned}$$

\(N =\ diag\ (0,n_1,\ldots ,n_S)\) where \(h_{0}^{0}=-(\lambda +\alpha +S\beta ),\ h_{01}^{0}=[S\beta \ \ 0 \ \ 0],\ h_{10}^0 = [0 \ \ \mu \ \ \mu ]^T,\)

$$\begin{aligned}&\left( {h_i^0 } \right) _{jk} = \left\{ \begin{array}{ll} - (\lambda + \alpha + (S - i)\beta ),&{}\quad k = j = 1 \\ - (\lambda + \alpha + \mu + (S - i)\beta ),&{}\quad k = j = 2,\ldots ,i + 2 \\ \lambda ,&{}\quad k = j + 1,j = 1,\ldots ,i + 1 \\ 0, &{}\quad \text {otherwise},\\ \end{array} \right. ,1 \le i \le S \\&\left( {h_{i\ i - 1}^0 } \right) _{jk} = \left\{ \begin{array}{ll} \mu ,&{}\quad k = 1,j = 2,3 \\ \mu , &{}\quad k = j - 1,j = 4,\ldots ,i + 2 \\ 0, &{}\quad \text {otherwise},\\ \end{array} \right. ,2 \le i \le S \\&\left( {h_{i\ i + 1}^0 } \right) _{jk} = \left\{ \begin{array}{ll} (S - i)\beta ,&{}\quad k = j = 1,2,\ldots ,i + 2 \\ 0,&{}\quad \text {otherwise}, \\ \end{array} \right. ,1 \le i \le S - 1 \\&\left( {h_i^{'0} } \right) _{jk} = \left\{ \begin{array}{ll} - (\lambda + \alpha + \eta + (S - i)\beta ),&{}\quad k = j = 1 \\ - (\lambda + \alpha + \mu + (S - i)\beta ),&{}\quad k = j = 2,\ldots ,i + 2 \\ \lambda ,&{}\quad k = j + 1,j = 1,\ldots ,i + 1 \\ 0, &{}\quad \text {otherwise}\\ \end{array} \right. ,1 \le i \le S, \\&\left( {n_{i} } \right) _{jk} = \left\{ \begin{array}{ll} \eta ,&{}\quad k =2, j = 1 \\ 0,&{}\quad \text {otherwise}, \\ \end{array} \right. ,1 \le i \le S. \end{aligned}$$

The dimensions of the matrices \(h^0_{i\ i-1},\ h^0_{i\ i+1}\) are, respectively, \((i+2) \times (i+1),\ (i+2) \times (i+3)\). The matrices \(h_i^0,\ h_i^{'0},\ n_i\) are square matrices of order \((i+2),\ 1 \le i \le S\).

$$\begin{aligned}&\left( L_0\right) _{jk} = \left\{ \begin{array}{ll} \lambda ,&{}\quad k = j= 1, \\ \lambda , &{}\quad 2 \le k \le S+1, j=\sum _{i=1}^k i+(k-1)\\ 0, &{}\quad \text {otherwise},\\ \end{array} \right. \!, \\&\left( M_0\right) _{jk} = \left\{ \begin{array}{ll} (S-j+1)\beta , &{}\quad 1 \le j \le S, k=\sum _{i=1}^{j+1} i + j\\ 0, &{}\quad \text {otherwise},\\ \end{array} \right. \!\!, \\&\left( L\right) _{jk} = \left\{ \begin{array}{ll} \lambda , &{}\quad 1 \le j \le S+1, k=j\\ 0, &{}\quad \text {otherwise},\\ \end{array} \right. \!\!, \\&\left( L_1\right) _{jk} = \left\{ \begin{array}{ll} p\lambda , &{}\quad 1 \le j \le S+1, k=j\\ 0, &{}\quad \text {otherwise},\\ \end{array} \right. \!\!, \\&\left( M\right) _{jk} = \left\{ \begin{array}{ll} (S-j+1)\beta , &{}\quad 1 \le j \le S, k=j+1\\ 0, &{}\quad \text {otherwise},\\ \end{array} \right. \!, \\&\left( H\right) _{jk} = \left\{ \begin{array}{ll} -(\lambda +S\beta +\alpha ) , &{}\quad k=j=1,\\ -(\lambda +(S-j+1)\beta +\mu +\alpha ) , &{}\quad 2 \le j \le S+1, k=j \\ \mu , &{}\quad 2 \le j \le S+1, k=j-1,\\ 0, &{}\quad \text {otherwise},\\ \end{array} \right. \!, \\&\left( H_1\right) _{jk} = \left\{ \begin{array}{ll} -(p\lambda +S\beta +\alpha ) , &{}\quad k=j=1,\\ -(p\lambda +(S-j+1)\beta +\mu +\alpha ) , &{}\quad 2 \le j \le S+1, k=j \\ \mu , &{}\quad 2 \le j \le S+1, k=j-1,\\ 0, &{}\quad \text {otherwise}.\\ \end{array} \right. \end{aligned}$$

Appendix 2

The following matrices give transition rates from the state \((i,n_3,k_1)\rightarrow (j,m_3,k_2)\) where \(i(j)\) represents the number of items in the inventory; \(n_3(m_3)\), the number of customers in the buffer and \(k_l, \text {for } l=1,2,\) are status of the server.

$$\begin{aligned}&\check{H}_{00(i,j)}^{(k_1 ,k_2 )} (n_3 ,m_3 ) \\&\quad = \left\{ \begin{array}{llll} S\beta ,&{}\quad j = i + 1,&{}\quad m_3 = n_3 = 0,&{}\quad k_2 = k_1 = 0,i = 0, \\ (S - i)\beta ,&{}\quad j = i + 1,&{}\quad m_3 = n_3 = 0,&{}\quad k_2 = k_1 = 0,1 \le i \le S - 2, \\ &{}\quad j = i + 1,&{}\quad m_3 = n_3 ,&{}\quad k_2 = k_1 = 1,1 \le i \le S - 2,0 \le n_3 \le i, \\ \mu ,&{}\quad j = i - 1,&{}\quad m_3 = n_3 = 0,&{}\quad k_2 = k_1 - 1,1 \le i \le S,k_1 = 1, \\ &{}\quad j = i - 1,&{}\quad m_3 = n_3 - 1,&{}\quad k_2 = k_1 - 1,1 \le i \le S,k_1 = 1,n_3 = 1, \\ &{}\quad j = i - 1,&{}\quad m_3 = n_3 - 1,&{}\quad k_2 = k_1 = 1,2 \le i \le S,2 \le n_3 \le i, \\ \lambda ,&{}\quad j = i,&{}\quad m_3 = n_3 = 0,&{}\quad k_2 = k_1 + 1,1 \le i \le S,k_1 = 0, \\ &{}\quad j = i,&{}\quad m_3 = n_3 + 1,&{}\quad k_2 = k_1 = 1,1 \le i \le S,0 \le n_3 \le i - 1, \\ - (\lambda + \alpha + S\beta ),&{}\quad j = i,&{}\quad m_3 = n_3 = 0,&{}\quad k_2 = k_1 = 0,i = 0, \\ - (\lambda + \alpha + (S - i)\beta ),&{}\quad j = i,&{}\quad m_3 = n_3 = 0,&{}\quad k_2 = k_1 = 0,1 \le i \le S, \\ - (\lambda + \mu + \alpha + (S - i)\beta ),&{}\quad j = i,&{}\quad m_3 = n_3 ,&{}\quad k_2 = k_1 = 1,1 \le i \le S,0 \le n_3 \le i, \\ 0,&{}\quad \text {otherwise}, \\ \end{array} \right. \\&\check{H}_{0(i,j)}^{(k_1 ,k_2 )} (n_3 ,m_3 )\\&\quad = \left\{ \begin{array}{llll} S\beta ,&{}\quad j = i + 1,&{}\quad m_3 = n_3 = 0,&{}\quad k_2 = k_1 = 0,i = 0, \\ (S - i)\beta ,&{}\quad j = i + 1,&{}\quad m_3 = n_3 = 0,&{}\quad k_2 = k_1 = 0,1 \le i \le S - 2, \\ &{}\quad j = i + 1,&{}\quad m_3 = n_3 ,&{}\quad k_2 = k_1 = 1,1 \le i \le S - 2,0 \le n_3 \le i, \\ \mu ,&{}\quad j = i - 1,&{}\quad m_3 = n_3 = 0,&{}\quad k_2 = k_1 - 1,1 \le i \le S,k_1 = 1, \\ &{}\quad j = i - 1,&{}\quad m_3 = n_3 - 1,&{}\quad k_2 = k_1 - 1,1 \le i \le S,k_1 = 1,n_3 = 1, \\ &{}\quad j = i - 1,&{}\quad m_3 = n_3 - 1,&{}\quad k_2 = k_1 = 1,2 \le i \le S,2 \le n_3 \le i, \\ \lambda ,&{}\quad j = i,&{}\quad m_3 = n_3 = 0,&{}\quad k_2 = k_1 + 1,1 \le i \le S,k_1 = 0, \\ &{}\quad j = i,&{}\quad m_3 = n_3 + 1,&{}\quad k_2 = k_1 = 1,1 \le i \le S,0 \le n_3 \le i - 1, \\ - (\lambda + \alpha + S\beta ),&{}\quad j = i,&{}\quad m_3 = n_3 = 0,&{}\quad k_2 = k_1 = 0,i = 0, \\ - (\lambda + \alpha + \eta + (S - i)\beta ),&{}\quad j = i,&{}\quad m_3 = n_3 = 0,&{}\quad k_2 = k_1 = 0,1 \le i \le S, \\ - (\lambda + \mu + \alpha + (S - i)\beta ),&{}\quad j = i,&{}\quad m_3 = n_3 ,&{}\quad k_2 = k_1 = 1,1 \le i \le S,0 \le n_3 \le i, \\ 0,&{}\quad \text {otherwise}, \\ \end{array} \right. \end{aligned}$$

\(\check{H}_{00},\ \check{H}_0,\ \check{B}_0\) are square matrices of order \(U_1\) and dimension of the matrices \(\check{B}_1,\ \check{M}_0\) are \((S+1)\times U_1\). \(\check{B}\) is a square matrix of order \(S+1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamoorthy, A., Shajin, D. & Lakshmy, B. On a queueing-inventory with reservation, cancellation, common life time and retrial. Ann Oper Res 247, 365–389 (2016). https://doi.org/10.1007/s10479-015-1849-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1849-x

Keywords

Navigation