Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A split-combination approach to merging knowledge bases in possibilistic logic

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We propose an adaptive approach to merging possibilistic knowledge bases that deploys multiple operators instead of a single operator in the merging process. The merging approach consists of two steps: the splitting step and the combination step. The splitting step splits each knowledge base into two subbases and then in the second step, different classes of subbases are combined using different operators. Our merging approach is applied to knowledge bases which are self-consistent and results in a knowledge base which is also consistent. Two operators are proposed based on two different splitting methods. Both operators result in a possibilistic knowledge base which contains more information than that obtained by the t-conorm (such as the maximum) based merging methods. In the flat case, one of the operators provides a good alternative to syntax-based merging operators in classical logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Amgoud L., Kaci, S.: An argumentation framework for merging conflicting knowledge bases: the prioritized case. In: Proceedings of the 8th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’05), pp. 527–538 (2005)

  2. Baral, C., Kraus, S., Minker, J., Subrahmanian, V.S.: Combining knowledge bases consisting of first-order analysis. Comput. Intell. 8(1), 45–71 (1992)

    Article  Google Scholar 

  3. Benferhat, S., Cayrol, C., Dubois, D., Lang, J., Prade, H.: Inconsistency management and prioritized syntax-based entailment. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI’93), pp. 640–645 (1993)

  4. Benferhat, S., Dubois, D., Prade, H.: From semantic to syntactic approaches to information combination in possibilistic logic. In: Aggregation and Fusion of Imperfect Information, pp. 141–151. Physica-Verlag, Heidelberg New York (1997)

    Google Scholar 

  5. Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling of inconsistent knowledge bases: a comparative study. Part 1: The flat case. Stud. Log. 58(1), 17–45 (1997)

    MATH  MathSciNet  Google Scholar 

  6. Benferhat, S., Dubois, D., Lang, J., Prade, H., Saffiotti, A., Smets, P.: A general approach for inconsistency handling and merging information in prioritized knowledge bases. In: Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR’98), pp. 466–477 (1998)

  7. Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling of inconsistent knowledge bases: a comparative study Part 2: The prioritized case. In: Orlowska, E. (ed.) Logic at Work : Essays Dedicated to the Memory of Helena Rasiowa, pp. 473–511. Physica-Verlag, Heidelberg New York (1998)

    Google Scholar 

  8. Benferhat, S., Dubois, D., Prade, H., Williams, M.-A.: A practical approach to fusing prioritized knowledge bases. In: Proceeding of the 9th Portuguese Conference on Artificial Intelligence, pp. 223–236 (1999)

  9. Benferhat, S., Dubois, D., Prade, H.: A computational model for belief change and fusing ordered belief bases. In: Williams, M.-A., Rott, H. (eds.) Frontiers of Belief Revision, pp. 109–134. Kluwer, Norwell, MA (2001)

    Google Scholar 

  10. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Possibilistic merging and distance-based fusion of propositional information. Ann. Math. Artif. Intell. 34, 217–252 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Benferhat, S., Kaci, S.: Fusion of possibilistic knowledge bases from a postulate point of view. Int. J. Approx. Reason. 33(3), 255–285 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Benferhat, S., Sossai, C.: Reasoning with multiple-source information in a possibilistic logic framework. Inf. Fusion 7(1), 80–96 (2006)

    Google Scholar 

  13. Bessant, B., Grégoire, E., Marquis, P., Sais, L.: Iterated syntax-based revision in a nonmonotonic setting. In: Williams, M.A., Rott, H. (eds.) Frontier in Belief Revision, pp. 369–391. Kluwer, Dordrecht, The Netherlands (2001)

    Google Scholar 

  14. Cholvy, L.: A logical approach to multi-sources reasoning. In: Proceedings of International Conference on Knowledge Representation and Reasoning Under Uncertainty. Logic at Work, pp. 183–196. Springer, Berlin Heidelberg New York (1992)

    Google Scholar 

  15. Cholvy, L., Hunter, A.: Information fusion in logic: a brief overview. In: Proceedings of the 1th International Joint Conference on Qualitative and Quantitative Practical Reasoning, pp. 86–95 (1997)

  16. Dubois, D., Prade, H.: Epistemic entrenchment and possibilistic logic. Artif. Intell. 50(2), 223–239 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 439–513. Oxford University Press, London, UK (1994)

    Google Scholar 

  18. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. Assoc. Comput. Mach. 42, 3–42 (1995)

    MATH  MathSciNet  Google Scholar 

  19. Everaere, P., Konieczny, S., Marquis, P.: On merging strategy-proofness. In: Proceedings of the 9th International Conference on Principles of Knowledge Representation and Reasoning (KR’04), pp. 357–368 (2004)

  20. Everaere, P., Konieczny, S., Marquis, P.: Quota and Gmin merging operators. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI’05), pp. 424–429 (2005)

  21. Grégoire, E., Konieczny, S.: Logic-based approaches to information fusion. Int. J. Inf. Fusion 7(1), 4–18 (2006)

    Google Scholar 

  22. Johnson, D.S.: A catalog of complexity classes. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 67–161 (1990)

  23. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht, The Netherlands (2000)

    MATH  Google Scholar 

  24. Konieczny, S., Pérez, R.P.: On the logic of merging. In: Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR’98), pp. 488–498. Morgan Kaufmann, San Mateo, CA (1998)

    Google Scholar 

  25. Konieczny, S.: On the difference between merging knowledge bases and combining them. In: Proceedings of the 7th International Conference on Principles of Knowledge Representation and Reasoning (KR’00), pp. 135–144. Morgan Kaufmann, San Mateo, CA (2000)

    Google Scholar 

  26. Konieczny, S., Pérez, R.P.: Merging information under constraints: a qualitative framework. J. Log. Comput. 12(5), 773–808 (2002)

    Article  MATH  Google Scholar 

  27. Konieczny, S.: Propositional belief merging and belief negotiation model. In: Proceedings of the 10th International Workshop on Non-Monotonic Reasoning, pp. 249–257 (2004)

  28. Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artif. Intell. 157(1,2), 49–79 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lang, J.: Possibilistic logic: complexity and algorithms. In: Gabbay, D., Smets, Ph. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 5, pp. 179–220. Kluwer, Norwell, MA (2000)

    Google Scholar 

  30. Liberatore, P., Schaerf, M.: Arbitration (or how to merge knowledge bases). IEEE Trans. Knowl. Data Eng. 10(1), 76–90 (1998)

    Article  Google Scholar 

  31. Lin, J.: Integration of weighted knowledge bases. Artif. Intell. 83, 363–378 (1996)

    Article  Google Scholar 

  32. Maynard-Zhang, P., Lehmann, D.: Representing and aggregating conflicting beliefs. J. Artif. Intell. Res. 19, 155–203 (2003)

    MATH  MathSciNet  Google Scholar 

  33. Meyer, T.: Merging epistemic states. In: PRICAI’2000: Topics in AI. LNAI 1886, pp. 286–296 (2000)

  34. Meyer, T., Ghose, A., Chopra, S.: Social choice, merging and elections. In: Proceedings of the 6th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’2001), pp. 466–477 (2001)

  35. Meyer, T., Ghose, A., Chopra, S.: Syntactic representations of semantic merging operations. In: Proceedings of the Seventh Pacific Rim International Conference on Artificial Intelligence (PRICAI’02), p. 620 (2002)

  36. Qi, G., Liu, W., Glass, D.H.: A split-combination method for merging inconsistent possibilistic knowledge bases. In: Proceedings of the 9th International Conference on Principles of Knowledge Representation and Reasoning (KR’04), pp. 348–356 (2004)

  37. Qi, G., Liu, W., Glass, D.H.: Combining individually inconsistent prioritized knowledge bases. In: Proceedings of the 10th International Workshop on Non-Monotonic Reasoning (NMR’04), pp. 342–349 (2004)

  38. Revesz, P.Z.: On the semantics of arbitration. Int. J. Algebra Comput. 7(2), 133–160 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilin Qi.

Additional information

This paper is a revised and extended version of [36].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, G., Liu, W., Glass, D.H. et al. A split-combination approach to merging knowledge bases in possibilistic logic. Ann Math Artif Intell 48, 45–84 (2006). https://doi.org/10.1007/s10472-006-9043-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-006-9043-0

Keywords

Mathematics Subject Classifications (2000)

Navigation