Abstract
This paper presents the detailed design, analysis and measurements of new configuration of quad-band antenna. The antenna is designed using a new uni-planar complementary split ring resonator (UP-CSRR) unit cell. The UP-CSRR unit cell is etched in the top plane of a microstrip patch which reduces the back radiation and enhances the antenna efficiency. The structure has advantage of the presence of complete ground plane that supports a typical broadside radiation. The designed antenna is resonating at 1.9, 3.3, 3.9 and 4.2 GHz with reflection coefficient lower than –10 dB. Moreover, the antenna has a patch size of 3.5 cm × 4 cm which is a consequence of the new IP-CSRR configuration smaller size compared to conventional CSRR.
Similar content being viewed by others
References
Eleftheriades, G. V., & Balmain, K. G. (2005). Negative Refractive Metamaterials. New Jersey: Wiley.
Caloz, C., & Itoh, T. (2006). Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications. New Jersey: Wiley.
Islam, S. S., Faruque, M. R. I., Islam, M. T., & Ali, M. T. (2017). A new wideband negative refractive index metamaterial for dual-band operation. Applied Physics A, 123, 252.
Caloz, C. (2011). Metamaterial dispersion engineering concepts and applications. Proceedings of the IEEE, 99(10), 1711–1719.
Thior, A., Lepage, A., Begaud, X., & Maas, O. (2012). Analytical approach for CRLH-based antennas design. Applied Physics A, 109(4), 1095–1101.
Dong, Y., & Itoh, T. (2012). Promising future of metamaterials. IEEE Microwave magaz., 13(2), 39–56.
W. Huang, A. Gummalla Lee, M. Achour, "Small Antennas Based on CRLH Structures: Concept, Design, and Applications", IEEE Ant. and Prop. Mag., 53, 2, 10–25, (2011).
Ziolkowski, R. W., Jin, P., & Lin, C. (2011). Metamaterial-Inspired Engineering of Antennas. IEEE Proceedings, 99(10), 1720–1731.
Abdalla, M. A. (2017). A high selective filtering small size/dual band antenna using hybrid terminated modified CRLH cell. Microwave and Optical Technology Letters, 59(7), 1680–1686.
Abdalla, M. A. (2017). Hybrid terminated metamaterial CRLH resonant antennas - analysis and design. Microwave and Optical Technology Letters, 59, 2721–2728.
Abdalla, M. A., Wahba, W. W., & Allam, A. M. (2017). Asymmetric dual-band integrated compact CRLH SIW array antenna. Journal of Electromagnetic Waves and Applications, 31(3), 284–296.
Abdelkebir, S., Mayouf, A., Mayouf, F., Zoubiri, B., & Devers, T. (2019). Study of metamaterial surface wave antenna based on split ring resonator. Microsystem Technologies, 25(3), 797–810.
Ali Wael, A. E., Mohamed, Hesham A., Ibrahim, Ahmed A., & Hamdalla, Mohamed Z M. (2019). Gain improvement of tunable band-notched UWB antenna using metamaterial lens for high speed wireless communications. Microsystem Technologies, 25(11), 1–7.
Falcone, T. L. F., Baena, J. D., Marques, R., Martin, F., & Sorolla, M. (2004). Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators. IEEE Microwave Wireless Component Lett., 14, 280–282.
Baena, J. B. J. D., Martin, F., Marques, R., et al. (2005). "Equivalent-circuit models for split-ring resonators and complementary splitring resonators coupled to planar transmission lines. IEEE Transaction on Microwave Theory and Techniques, 53(4), 1451–1461.
Selga, J., Rodríguez, A., Orellana, M., Boria, V., & Martín, F. (2014). Automated synthesis of transmission lines loaded with complementary split ring resonators (CSRRs) and open complementary split ring resonators (OCSRRs) through aggressive space mapping (ASM). Applied Physics A, 117(2), 557–565.
Su, L., Naqui, J., Contreras, J., & Martín, F. (2016). Modeling and applications of metamaterial transmission lines loaded with pairs of coupled complementary split-ring resonators (CSRRs). IEEE Antennas and Wireless Propagation Letters, 15, 154–157.
Abdalla, M. A., Fouad, M. A., Elregeily, H. A., & Mitkees, A. A. (2012). Wideband negative permittivity metamaterial for size reduction of stopband filter in antenna applications. Progress in Electromagnetics Research C, 25, 55–66.
J. Naqui, AFP., M. Sindreu, F. Mesa, J. Martel, F. Medina, F. Martín (2012). "Common-mode suppression in microstrip differential lines by means of complementary split ring resonators: theory and applications." IEEE Trans. on Microwave Theory and Techniques, 60, 10, 3023-3034.
Horestani, A. K., Sindreu, M. D., Naqui, J., Fumeaux, C., & Martin, F. (2014). "S-shaped complementary split ring resonators and their application to compact differential bandpass filters with common-mode suppression. IEEE Microwave and Wireless Components Lett., 24(3), 149–151.
Huang, Y. M., Shao, Z., Jiang, W., Huang, T., & Wang, G. (2016). Half-mode substrate integrated waveguide bandpass filter loaded with horizontal–asymmetrical stepped-impedance complementary split-ring resonators. Electronics Lett., 52(12), 1034–1036.
Cao, W., Xiang, Y., Zhang, B., Liu, A., Yu, T., & Guo, D. (2011). A low-cost compact patch antenna with beam steering based on CSRR-loaded ground. IEEE Antennas and Wireless Prop. Lett., 10, 1520–1523.
Mehdipour, A., Denidni, T., & Sebak, A. (2014). Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern. IEEE Trans. on Antennas and Prop., 62(2), 555–562.
Tang, M., & Ziolkowski, R. W. (2013). A study of low-profile, broadside radiation, efficient, electrically small antennas based on complementary split ring resonators. IEEE Trans. on Antennas and Prop., 61(9), 4419–4430.
Dong, Y., Toyao, H., & Itoh, T. (2012). Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators. IEEE Trans. on Antennas and Prop., 60(2), 772–785.
Alrawashdeh, R. S., Huang, Y., Kod, M., & Sajak, A. A. (2014). A broadband flexible implantable loop antenna with complementary split ring resonators. IEEE Antennas and Wireless Prop. Lett, 14, 1506–1509.
Sharma, S. K., Abdalla, M. A., & Chaudhary, R. K. (2017). “An electrically small SICRR Metamaterial`-inspired dual-band antenna for WLAN and WiMAX applications. Microwave and Optical Technology Lett., 59(3), 573–578.
Bahrami, H., & Hakkak, M. (2008). Analysis and design of highly compact bandpass waveguide filter utilizing complementary split ring resonators (CSRR). Prog. in Elect. Research, 80, 107–122.
D. D. Colin and Z. Hu. "Novel CSRR-loaded left handed Microstrip transmission line, for microwave applications." in proc. 2013 IEEE Antennas and Prop. Society Int. Symposium, pp. 1188–1189.
D. Colin, and Z. Hu. "Uniplanar metamaterial based dual composite right-/-left handed (D-CRLH) microstrip line for microwave circuit applications." In proc. IEEE 2014 Asia-Pacific in Microwave Conference APMC), pp. 211–213.
M. A. Abdalla, G. Arafa, and M. Saad, "Compact UWB LPF Based on Uni-Planar Metamaterial Complementary Split Ring Resonator", in proc. 2016 10th Int. Cong. on Adv. Electromagnetic Material in Microwave and Optics, Greece, pp. 10-12.
W. Wahba, M. A. Abdalla, A. A. N. Mohamed, and A. Allam, "A uni-planar microstrip CSRR metamaterial antenna," in proc. 2014 IEEE Antennas and Propagation Society Int. Symposium (APSURSI)., pp. 545–546.
Ambresh, P. A., et al. (2014). Quad band rectangular microstrip antenna for S and C-band applications. International Journal of Computer and Communication Engineering, 3(5), 334.
Wei, Xue, et al. (2016). A compact lowprofile and quad-band antenna with three different shaped slots. Progress In Electromagnetics Research C, 70, 43–51.
Boukarkar, Abdelheq, et al. (2017). Miniaturized Single-Feed Multiband Patch Antennas. IEEE Transactions on Antennas and Propagation, 65(2), 850–854.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Abdalla, M.A., Wahba, W.W., Elreagaily, H. et al. Miniaturized uni-planar CSRR based quad-band antenna-analysis and investigation. Analog Integr Circ Sig Process 108, 37–44 (2021). https://doi.org/10.1007/s10470-021-01803-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10470-021-01803-4