Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Miniaturized uni-planar CSRR based quad-band antenna-analysis and investigation

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents the detailed design, analysis and measurements of new configuration of quad-band antenna. The antenna is designed using a new uni-planar complementary split ring resonator (UP-CSRR) unit cell. The UP-CSRR unit cell is etched in the top plane of a microstrip patch which reduces the back radiation and enhances the antenna efficiency. The structure has advantage of the presence of complete ground plane that supports a typical broadside radiation. The designed antenna is resonating at 1.9, 3.3, 3.9 and 4.2 GHz with reflection coefficient lower than –10 dB. Moreover, the antenna has a patch size of 3.5 cm × 4 cm which is a consequence of the new IP-CSRR configuration smaller size compared to conventional CSRR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eleftheriades, G. V., & Balmain, K. G. (2005). Negative Refractive Metamaterials. New Jersey: Wiley.

    Book  Google Scholar 

  2. Caloz, C., & Itoh, T. (2006). Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications. New Jersey: Wiley.

    Google Scholar 

  3. Islam, S. S., Faruque, M. R. I., Islam, M. T., & Ali, M. T. (2017). A new wideband negative refractive index metamaterial for dual-band operation. Applied Physics A, 123, 252.

    Article  Google Scholar 

  4. Caloz, C. (2011). Metamaterial dispersion engineering concepts and applications. Proceedings of the IEEE, 99(10), 1711–1719.

    Article  Google Scholar 

  5. Thior, A., Lepage, A., Begaud, X., & Maas, O. (2012). Analytical approach for CRLH-based antennas design. Applied Physics A, 109(4), 1095–1101.

    Article  Google Scholar 

  6. Dong, Y., & Itoh, T. (2012). Promising future of metamaterials. IEEE Microwave magaz., 13(2), 39–56.

    Article  Google Scholar 

  7. W. Huang, A. Gummalla Lee, M. Achour, "Small Antennas Based on CRLH Structures: Concept, Design, and Applications", IEEE Ant. and Prop. Mag., 53, 2, 10–25, (2011).

  8. Ziolkowski, R. W., Jin, P., & Lin, C. (2011). Metamaterial-Inspired Engineering of Antennas. IEEE Proceedings, 99(10), 1720–1731.

    Article  Google Scholar 

  9. Abdalla, M. A. (2017). A high selective filtering small size/dual band antenna using hybrid terminated modified CRLH cell. Microwave and Optical Technology Letters, 59(7), 1680–1686.

    Article  Google Scholar 

  10. Abdalla, M. A. (2017). Hybrid terminated metamaterial CRLH resonant antennas - analysis and design. Microwave and Optical Technology Letters, 59, 2721–2728.

    Article  Google Scholar 

  11. Abdalla, M. A., Wahba, W. W., & Allam, A. M. (2017). Asymmetric dual-band integrated compact CRLH SIW array antenna. Journal of Electromagnetic Waves and Applications, 31(3), 284–296.

    Article  Google Scholar 

  12. Abdelkebir, S., Mayouf, A., Mayouf, F., Zoubiri, B., & Devers, T. (2019). Study of metamaterial surface wave antenna based on split ring resonator. Microsystem Technologies, 25(3), 797–810.

    Article  Google Scholar 

  13. Ali Wael, A. E., Mohamed, Hesham A., Ibrahim, Ahmed A., & Hamdalla, Mohamed Z M. (2019). Gain improvement of tunable band-notched UWB antenna using metamaterial lens for high speed wireless communications. Microsystem Technologies, 25(11), 1–7.

    Google Scholar 

  14. Falcone, T. L. F., Baena, J. D., Marques, R., Martin, F., & Sorolla, M. (2004). Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators. IEEE Microwave Wireless Component Lett., 14, 280–282.

    Article  Google Scholar 

  15. Baena, J. B. J. D., Martin, F., Marques, R., et al. (2005). "Equivalent-circuit models for split-ring resonators and complementary splitring resonators coupled to planar transmission lines. IEEE Transaction on Microwave Theory and Techniques, 53(4), 1451–1461.

    Article  Google Scholar 

  16. Selga, J., Rodríguez, A., Orellana, M., Boria, V., & Martín, F. (2014). Automated synthesis of transmission lines loaded with complementary split ring resonators (CSRRs) and open complementary split ring resonators (OCSRRs) through aggressive space mapping (ASM). Applied Physics A, 117(2), 557–565.

    Article  Google Scholar 

  17. Su, L., Naqui, J., Contreras, J., & Martín, F. (2016). Modeling and applications of metamaterial transmission lines loaded with pairs of coupled complementary split-ring resonators (CSRRs). IEEE Antennas and Wireless Propagation Letters, 15, 154–157.

    Article  Google Scholar 

  18. Abdalla, M. A., Fouad, M. A., Elregeily, H. A., & Mitkees, A. A. (2012). Wideband negative permittivity metamaterial for size reduction of stopband filter in antenna applications. Progress in Electromagnetics Research C, 25, 55–66.

    Article  Google Scholar 

  19. J. Naqui, AFP., M. Sindreu, F. Mesa, J. Martel, F. Medina, F. Martín (2012). "Common-mode suppression in microstrip differential lines by means of complementary split ring resonators: theory and applications." IEEE Trans. on Microwave Theory and Techniques, 60, 10, 3023-3034.

  20. Horestani, A. K., Sindreu, M. D., Naqui, J., Fumeaux, C., & Martin, F. (2014). "S-shaped complementary split ring resonators and their application to compact differential bandpass filters with common-mode suppression. IEEE Microwave and Wireless Components Lett., 24(3), 149–151.

    Article  Google Scholar 

  21. Huang, Y. M., Shao, Z., Jiang, W., Huang, T., & Wang, G. (2016). Half-mode substrate integrated waveguide bandpass filter loaded with horizontal–asymmetrical stepped-impedance complementary split-ring resonators. Electronics Lett., 52(12), 1034–1036.

    Article  Google Scholar 

  22. Cao, W., Xiang, Y., Zhang, B., Liu, A., Yu, T., & Guo, D. (2011). A low-cost compact patch antenna with beam steering based on CSRR-loaded ground. IEEE Antennas and Wireless Prop. Lett., 10, 1520–1523.

    Article  Google Scholar 

  23. Mehdipour, A., Denidni, T., & Sebak, A. (2014). Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern. IEEE Trans. on Antennas and Prop., 62(2), 555–562.

    Article  Google Scholar 

  24. Tang, M., & Ziolkowski, R. W. (2013). A study of low-profile, broadside radiation, efficient, electrically small antennas based on complementary split ring resonators. IEEE Trans. on Antennas and Prop., 61(9), 4419–4430.

    Article  Google Scholar 

  25. Dong, Y., Toyao, H., & Itoh, T. (2012). Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators. IEEE Trans. on Antennas and Prop., 60(2), 772–785.

    Article  Google Scholar 

  26. Alrawashdeh, R. S., Huang, Y., Kod, M., & Sajak, A. A. (2014). A broadband flexible implantable loop antenna with complementary split ring resonators. IEEE Antennas and Wireless Prop. Lett, 14, 1506–1509.

    Article  Google Scholar 

  27. Sharma, S. K., Abdalla, M. A., & Chaudhary, R. K. (2017). “An electrically small SICRR Metamaterial`-inspired dual-band antenna for WLAN and WiMAX applications. Microwave and Optical Technology Lett., 59(3), 573–578.

    Article  Google Scholar 

  28. Bahrami, H., & Hakkak, M. (2008). Analysis and design of highly compact bandpass waveguide filter utilizing complementary split ring resonators (CSRR). Prog. in Elect. Research, 80, 107–122.

    Article  Google Scholar 

  29. D. D. Colin and Z. Hu. "Novel CSRR-loaded left handed Microstrip transmission line, for microwave applications." in proc. 2013 IEEE Antennas and Prop. Society Int. Symposium, pp. 1188–1189.

  30. D. Colin, and Z. Hu. "Uniplanar metamaterial based dual composite right-/-left handed (D-CRLH) microstrip line for microwave circuit applications." In proc. IEEE 2014 Asia-Pacific in Microwave Conference APMC), pp. 211–213.

  31. M. A. Abdalla, G. Arafa, and M. Saad, "Compact UWB LPF Based on Uni-Planar Metamaterial Complementary Split Ring Resonator", in proc. 2016 10th Int. Cong. on Adv. Electromagnetic Material in Microwave and Optics, Greece, pp. 10-12.

  32. W. Wahba, M. A. Abdalla, A. A. N. Mohamed, and A. Allam, "A uni-planar microstrip CSRR metamaterial antenna," in proc. 2014 IEEE Antennas and Propagation Society Int. Symposium (APSURSI)., pp. 545–546.

  33. Ambresh, P. A., et al. (2014). Quad band rectangular microstrip antenna for S and C-band applications. International Journal of Computer and Communication Engineering, 3(5), 334.

    Article  Google Scholar 

  34. Wei, Xue, et al. (2016). A compact lowprofile and quad-band antenna with three different shaped slots. Progress In Electromagnetics Research C, 70, 43–51.

    Article  Google Scholar 

  35. Boukarkar, Abdelheq, et al. (2017). Miniaturized Single-Feed Multiband Patch Antennas. IEEE Transactions on Antennas and Propagation, 65(2), 850–854.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Abdalla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalla, M.A., Wahba, W.W., Elreagaily, H. et al. Miniaturized uni-planar CSRR based quad-band antenna-analysis and investigation. Analog Integr Circ Sig Process 108, 37–44 (2021). https://doi.org/10.1007/s10470-021-01803-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01803-4

Keywords

Navigation