Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Comparison of Single Channel Fetal ECG Extraction Methods

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The abdominal electrocardiogram (ECG) provides a non-invasive method for monitoring the fetal cardiac activity in pregnant women. However, the temporal and frequency overlap between the fetal ECG (FECG), the maternal ECG (MECG) and noise results in a challenging source separation problem. This work seeks to compare temporal extraction methods for extracting the fetal signal and estimating fetal heart rate. A novel method for MECG cancelation using an echo state neural network (ESN) based filtering approach was compared with the least mean square (LMS), the recursive least square (RLS) adaptive filter and template subtraction (TS) techniques. Analysis was performed using real signals from two databases composing a total of 4 h 22 min of data from nine pregnant women with 37,452 reference fetal beats. The effects of preprocessing the signals was empirically evaluated. The results demonstrate that the ESN based algorithm performs best on the test data with an F1 measure of 90.2% as compared to the LMS (87.9%), RLS (88.2%) and the TS (89.3%) techniques. Results suggest that a higher baseline wander high pass cut-off frequency than traditionally used for FECG analysis significantly increases performance for all evaluated methods. Open source code for the benchmark methods are made available to allow comparison and reproducibility on the public domain data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. The set of the 14 records selected from the PNIFECGDB was: 154, 192, 244, 274, 290, 323, 368, 444, 597, 733, 746, 811, 826, 906.

  2. The study was approved by The Institutional Review Boards at Summa Health System (RP#12018) and Brigham and Women’s Hospital (RP#2010-P-002778/1).

  3. It is less meaningful to report a direct comparison of prefiltering effects for the ESN and LMS since parameters have been optimized for these two algorithms based on a given prefiltering (\(f_\mathrm{b}=20\) Hz, \(f_\mathrm{h}=95\) Hz).

References

  1. ANSI/AAMI/ISO EC57 (1998/(R)2008) Testing and reporting performance results of cardiac rhythm and ST-segment measurement algorithms.

  2. Åström, K. J., and B. Wittenmark. Adaptive Control, 2nd ed. Reading, MA: Addison Wesley, 1994.

  3. Barnett, S., and D. Maulik. Guidelines and recommendations for safe use of Doppler ultrasound in perinatal applications. J. Matern-Fetal Neonatal Med. 10(2):75–84, 2001.

    Article  CAS  Google Scholar 

  4. Behar, J., A. Johnson, J. Oster, and G. D. Clifford. An Echo State Neural Network for Foetal Electrocardiogram Extraction Optimised by Random Search. Nevada: NIPS Lake Tahoe, 2013a.

  5. Behar, J., J. Oster, and G. D. Clifford. Non invasive FECG extraction from a set of abdominal sensors. In: Computing in Cardiology 2013, Zaragoza, Spain, 2013b.

  6. Bergstra, J., and Y. Bengio. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13:281–305, 2012.

    Google Scholar 

  7. Cardoso, J., and A. Souloumiac. Blind beamforming for non Gaussian signals. In: Institute Electrical Engineer Proceedings of Radar Signal Processing, London, vol. 140(6), pp. 362–370, 1993.

  8. Cerutti, S., G. Baselli, S. Civardi, E. Ferrazzi, A. Marconi, M. Pagani, and G. Pardi. Variability analysis of fetal heart rate signals as obtained from abdominal electrocardiographic recordings. J. Perinat Med. 14(6):445–452, 1986.

    Article  CAS  Google Scholar 

  9. Chatzis, S., and Y. Demiris. The copula echo state network. Pattern Recogn. 45(1):570–577, 2012.

    Article  Google Scholar 

  10. Clifford, G. D., J. Behar, J. Oster, and A. Johnson. IPM Open Source Code. https://physionet.org/users/gari@alum.mit.edu/works/IPMCode/, 2014. Last updated Feb 2014.

  11. Clifford, G. D., J. Behar, Q. Li, and I. Rezek. Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiol. Meas. 33(9):1419–1433, 2012.

    Article  CAS  PubMed  Google Scholar 

  12. Cohen, W. R., S. Ommani, S. Hassan, F. G. Mirza, M. Solomon, R. Brown, B. S. Schifrin, J. M. Himsworth, and B. R. Hayes-Gill. Accuracy and reliability of fetal heart rate monitoring using maternal abdominal surface electrodes. Acta Obstet .Gynecol. Scand. 91(11):1306–1313, 2012.

    Article  PubMed  Google Scholar 

  13. Douglas, S. Numerically-robust O (N(2)) RLS algorithms using least-squares prewhitening. In: Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing, vol. 1, pp. 412–415, 2000.

  14. Goldberger, A. L., L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):215–220, 2000.

    Article  Google Scholar 

  15. Guerrero-Martinez, J., M. Martinez-Sober, M. Bataller-Mompean, and J. Magdalena-Benedito. New algorithm for fetal QRS detection in surface abdominal records. In: Computation in Cardiology, pp. 441–444, 2006.

  16. Hyvärinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw 10(3):626–634, 1999.

    Article  Google Scholar 

  17. Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks. Technical Report GMD Report 148. German National Research Center for Information Technology 148, 2001. http://www.faculty.jacobs-university.de/hjaeger/pubs/EchoStatesTechRep.pdf.

  18. Jaeger, H. A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach, 3rd revision. GMD-Forschungszentrum Informationstechnik, 2008. http://www.pdx.edu/sites/www.pdx.edu.sysc/files/Jaeger_TrainingRNNsTutorial.2005.pdf.

  19. Kanjilal, P., S. Palit, and G. Saha. Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Trans. Biomed. Eng. 44(1):51–59, 1997.

    Article  CAS  Google Scholar 

  20. Kotas, M., J. Jezewski, A. Matonia, and T. Kupka. Towards noise immune detection of fetal QRS complexes. Comput. Methods Programs Biomed. 97(3):241–256, 2010.

    Article  CAS  Google Scholar 

  21. Lewis, M. Review of electromagnetic source investigations of the fetal heart. Med. Eng. Phys. 25:801–810, 2003.

    Article  PubMed  Google Scholar 

  22. Lukoševičius, M. A practical guide to applying echo state networks. Lect. Notes Comput. Sci. 7700:659–686, 2012.

    Article  Google Scholar 

  23. Lukoševičius, M., and H. Jaeger. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3):127–149, 2009.

    Article  Google Scholar 

  24. Martens, S., C. Rabotti, M. Mischi, and R. Sluijter. A robust fetal ECG detection method for abdominal recordings. Physiol. Meas. 28:373–388, 2007.

    Article  PubMed  Google Scholar 

  25. Oudijk, M., A. Kwee, G. Visser, S. Blad, E. Meijboom, and K. Rosén. The effects of intrapartum hypoxia on the fetal QT interval. BJOG 111(7):656–660, 2004.

    Article  PubMed  Google Scholar 

  26. Pan, J., and W. Tompkins. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3):230–236, 1985.

    Article  CAS  Google Scholar 

  27. Petrenas, A., V. Marozas, L. Sornmo, and A. Lukoševičius. An echo state neural network for QRST cancelation during atrial fibrillation. IEEE Trans. Biomed. Eng. 59(10):2950–2957, 2012.

    Article  Google Scholar 

  28. Rodan, A., and P. Tino. Minimum complexity echo state network. IEEE Trans. Neural Netw. 22(1):131–144, 2011.

    Article  Google Scholar 

  29. Sameni, R. Extraction of Fetal Cardiac Signals from an Array of Maternal Abdominal Recordings. Ph.D. Thesis, Sharif University of Technology, Institut National Polytechnique de Grenoble, 2008. http://www.sameni.info/Publications/Thesis/PhDThesis.pdf.

  30. Sameni, R., and G. D. Clifford. A review of fetal ECG signal processing; issues and promising directions. Open Pacing Electrophysiol. Ther. J. 3:4–20, 2010.

    PubMed Central  PubMed  Google Scholar 

  31. Sameni, R., C. Jutten, and M. Shamsollahi. Multichannel electrocardiogram decomposition using periodic component analysis. IEEE Trans. Biomed. Eng. 55(8):1935–1940, 2008.

    Article  Google Scholar 

  32. Silva, I., J. Behar, G. D. Clifford, and G. B. Moody. Noninvasive fetal ECG: the PhysioNet/Computing in Cardiology Challenge 2013. In: Computing in Cardiology 2013, Zaragoza, Spain, 2013.

  33. Ungureanu, M., J. Bergmans, S. Oei, and R. Strungaru. Fetal ECG extraction during labor using an adaptive maternal beat subtraction technique. Biomedizinische Technik 52(1):56–60, 2007.

    Article  PubMed  Google Scholar 

  34. Vahidi, A., A. Stefanopoulou, and H. Peng. Recursive least squares with forgetting for online estimation of vehicle mass and road grade: theory and experiments. Vehicle Syst. Dyn. 43(1):31–55, 2005.

    Article  Google Scholar 

  35. Vullings, R., C. Peters, R. Sluijter, M. Mischi, S. Oei, and J. Bergmans. Dynamic segmentation and linear prediction for maternal ECG removal in antenatal abdominal recordings. Physiol. Meas. 30(3):291–307, 2009.

    Article  CAS  PubMed  Google Scholar 

  36. Widrow, B., J. Glover, J. McCool, J. Kaunitz, C. Williams, R. Hearn, J. Zeidler, E. Dong, and R. Goodlin. Adaptive noise cancelling: principles and applications. Proc. IEEE 63(12):1692–1716, 1975.

    Article  Google Scholar 

  37. Zaunseder, S., F. Andreotti, M. Cruz, H. Stepan, C. Schmieder, H. Malberg, and A. Jank. (Como, July 2012) Fetal QRS detection by means of Kalman filtering and using the Event Synchronous Canceller. In: 7th International Workshop on Biosignal Interpretation.

Download references

Acknowledgments

JB is supported by the UK Engineering and Physical Sciences Research Council, the Balliol French Anderson Scholarship Fund and MindChild Medical Inc. North Andover, MA. JO is supported by Wellcome Trust Centre Grant No. 098461/Z/12/Z (Sleep, Circadian Rhythms & Neuroscience Institute). AJ acknowledges the support of the RCUK Digital Economy Programme grant number EP/G036861/1 (Oxford Centre for Doctoral Training in Healthcare Innovation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Behar.

Additional information

Associate Editor K. A. Athanasiou oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behar, J., Johnson, A., Clifford, G.D. et al. A Comparison of Single Channel Fetal ECG Extraction Methods. Ann Biomed Eng 42, 1340–1353 (2014). https://doi.org/10.1007/s10439-014-0993-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-0993-9

Keywords

Navigation