Abstract
In most fluid dynamics applications, unsteady flow is a natural phenomenon and steady models are just simplifications of the real situation. Since computing power increases, the number and complexity of unsteady flow simulations grows, too. Besides time-dependent features, scientists and engineers are essentially looking for a description of the overall flow behavior, usually with respect to the requirements of their application domain. We call such a description a flow structure, requiring a framework of definitions for an unsteady flow structure. In this article, we present such a framework based on pathline predicates. Using the common computer science definition, a predicate is a Boolean function, and a pathline predicate is a Boolean function on pathlines that decides if a pathline has a property of interest to the user. We will show that any suitable set of pathline predicates can be interpreted as an unsteady flow structure definition. The visualization of the resulting unsteady flow structure provides a visual description of overall flow behavior with respect to the user’s interest. Furthermore, this flow structure serves as a basis for pathline placements tailored to the requirements of the application.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bauer, D., Peikert, R.: Vortex tracking in scale space. In: Data Visualization 2002, Proceedings of VisSym 2002, pp. 233–240. Eurographics Association, Aire-la-Ville (2002)
Bauer, D., Peikert, R., Sato, M., Sick, M.: A case study in selective visualization of unsteady 3D flow. In: IEEE Visualization 2002, pp. 525–528. IEEE Computer Society Press, Boston, MA (2002)
Becker, B., Lane, D., Max, N.: Unsteady flow volumes. In: IEEE Visualization 1995, pp. 329–335. IEEE Computer Society Press, Atlanta, GA (1995)
Cabral, B., Leedom, L.C.: Imaging vector fields using line integral convolution. Comput. Graph. 27(4), 263–270 (1993)
Forsell, L., Cohen, S.: Using line integral convolution for flow visualization: curvilinear grids, variable speed animation, and unsteady flows. IEEE Trans. Vis. Comput. Graph. 1(2), 133–141 (1995)
Garth, C., Tricoche, X., Scheuermann, G.: Tracking of vector field singularities in unstructured 3D time-dependent datasets. In: IEEE Visualization 2004, pp. 329–336. IEEE Computer Society Press, Austin, TX (2004)
Griebel, M., Dornseifer, T., Neunhoeffer, T.: Numerical Simulation in Fluid Dynamics, a Practical Introduction. SIAM, Philadelphia, PA (1998)
Ji, G., Shen, H., Wenger, R.: Volume tracking using higher dimensional isosurfacing. In: IEEE Visualization 2003, pp. 209–216. IEEE Computer Society Press, Seattle, WA (2003)
Jobard, B., Erlebacher, G., Hussaini, M.: Hardware-assisted texture advection for unsteady flow visalization. In: IEEE Visualization 2000, pp. 155–162. IEEE Computer Society Press, Salt Lake City, UT (2000)
Jobard, B., Erlebacher, G., Hussaini, M.: Lagrangian–Eulerian advection of noise and dye textures for unsteady flow visualization. IEEE Trans. Vis. Comput. Graph. 8(3), 211–222 (2002)
Jonker, P.: Morphological operations on 3D and 4D images: from shape primitive detection to skeletonization. In: Discrete Geometry for Computer Imagery: 9th International Conference, DGCI 2000, pp. 371–391. Springer, Berlin, Heidelberg, Uppsala (2000)
Jonker, P.: Skeletons in n dimensions using shape primitives. Pattern Recogn. Lett. 23(6), 677–686 (2002)
Kuba, A., Palagyi, K.: A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recogn. Lett. 19(7), 613–627 (1998)
Lane, D.: Scientific visualization of large-scale unsteady fluid flows. In: Scientific Visualization, pp. 125–145. IEEE Computer Society, Los Alamitos, CA (1997)
Liu, Z., Moorhead II, R.: Accelerated unsteady flow line integral convolution. IEEE Trans. Vis. Comput. Graph. 11(2), 113–125 (2005)
Park, S., Budge, B., Linsen, L., Hamann, B., Joy, K.: Dense geometric flow visualization. In: Brodlie, K., Duke, D., Joy, K. (eds.) Proceedings of Eurographics/IEEE-VGTC Symposium on Visualization 2005 (EuroVis 2005), pp. 21–28. Eurographics Association, Aire-la-Ville (2005)
Peikert, R., Roth, M.: The parallel vectors operator – a vector field visualization primitive. In: IEEE Visualization 1999, pp. 263–270. IEEE Computer Society Press, San Francisco, CA (1999)
Post, F., Vrolijk, B., Hauser, H., Laramee, R., Doleisch, H.: The state of the art in flow visualization: feature extraction and tracking. Comput. Graph. Forum 4(22), 775–792 (2003)
Reinders, F., Post, F.H., Spoelder, H.: Attribute-based feature tracking. In: Data Visualization 1999, Proceedings of VisSym 1999, pp. 63–72. Eurographics Association, Vienna (1999)
Salzbrunn, T., Scheuermann, G.: Streamline predicates. IEEE Trans. Vis. Comput. Graph. 12(6), 1601–1612 (2006)
Samtaney, R., Silver D., Zabusky, N., Cao, J.: Visualizing features and tracking their evolution. IEEE Comput. 27(7), 20–27 (1994)
Shen, H., Kao, D.: A new line integral convolution algorithm for visualizing time-varying flow fields. IEEE Trans. Vis. Comput. Graph. 4(2), 98–108 (1998)
Shi, K., Theisel, H., Hauser, H., Weinkauf, T., Matkovic, K., Hege, H., Seidel, H.: Path line attributes – an information visualization approach to analyzing the dynamic behavior of 3D time-dependent flow fields. To appear in TopoInVis 2007
Silver, D., Wang, X.: Tracking and visualizing turbulent 3d features. IEEE Trans. Vis. Comput. Graph. 3(2), 129–141 (1997)
Sujudi, D., Haimes, R.: Identification of swirling flow in 3D vector fields. Tech. Rep. AIAA Paper 95-1715, American Institute of Aeronautics and Astronautics (1995)
Theisel, H., Seidel, H.: Feature flow fields. In: Data Visualization 2003, Proceedings of VisSym 2003, pp. 141–148. Eurographics Association, Grenoble (2003)
Theisel, H., Weinkauf, T., Hege, H., Seidel, H.: Topological methods for 2D time-dependent vector fields based on streamlines and pathlines. IEEE Trans. Vis. Comput. Graph. 11(4), 383–394 (2005)
Tricoche, X., Scheuermann, G., Hagen, H.: Topology-based visualization of time-dependent 2D vector fields. In: Data Visualization 2001, Proceedings of VisSym 2001, pp. 117–126. Eurographics Association, Ascona (2001)
Tricoche, X., Wischgoll, T., Scheuermann, G., Hagen, H.: Topological tracking for the visualization of time dependent two-dimensional flows. Comput. Graph. 26(2), 249–257 (2002)
Verma, V., Kao, D., Pang, A.: PLIC: Bridging the gap between streamlines and LIC. In: IEEE Visualization 1999, pp. 341–348. IEEE Computer Society Press, San Francisco, CA (1999)
van Walsum, T., Post, F.H., Silver, D., Post, F.J.: Feature extraction and iconic visualization. IEEE Trans. Vis. Comput. Graph. 2(2), 111–119 (1996)
Weigle, C., Banks, D.: Extracting iso-valued features in 4-dimensional scalar fields. In: Proceedings of the Symposium on Volume Visualization, pp. 103–110. ACM, Research Triangle Park, NC (1998)
Weiskopf, D., Erlebacher, G., Ertl, T.: A texture-based framework for spacetime-coherent visualization of time-dependent vector fields. In: IEEE Visualization 2003, pp. 107–114. IEEE Computer Society Press, Seattle, WA (2003)
Westermann, R., Johnson, C., Ertl, T.: Topology-preserving smoothing of vector fields. IEEE Trans. Vis. Comput. Graph. 7(3), 222–229 (2001)
van Wijk, J.: Image based flow visualization. In: ACM SIGGRAPH 2002, pp. 745–754. ACM, San Antonio, TX (2002)
Wischgoll, T., Scheuermann, G., Hagen, H.: Tracking closed streamlines in time-dependent planar flows. In: Ertl, T., Girod, B., Niemann, H., Seidel, H.P. (eds.) Vision, Modeling, and Visualization 2001, pp. 447–454. Aka, Berlin (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Salzbrunn, T., Garth, C., Scheuermann, G. et al. Pathline predicates and unsteady flow structures. TVC 24, 1039–1051 (2008). https://doi.org/10.1007/s00371-007-0204-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-007-0204-x