Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Pathline predicates and unsteady flow structures

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In most fluid dynamics applications, unsteady flow is a natural phenomenon and steady models are just simplifications of the real situation. Since computing power increases, the number and complexity of unsteady flow simulations grows, too. Besides time-dependent features, scientists and engineers are essentially looking for a description of the overall flow behavior, usually with respect to the requirements of their application domain. We call such a description a flow structure, requiring a framework of definitions for an unsteady flow structure. In this article, we present such a framework based on pathline predicates. Using the common computer science definition, a predicate is a Boolean function, and a pathline predicate is a Boolean function on pathlines that decides if a pathline has a property of interest to the user. We will show that any suitable set of pathline predicates can be interpreted as an unsteady flow structure definition. The visualization of the resulting unsteady flow structure provides a visual description of overall flow behavior with respect to the user’s interest. Furthermore, this flow structure serves as a basis for pathline placements tailored to the requirements of the application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bauer, D., Peikert, R.: Vortex tracking in scale space. In: Data Visualization 2002, Proceedings of VisSym 2002, pp. 233–240. Eurographics Association, Aire-la-Ville (2002)

    Google Scholar 

  2. Bauer, D., Peikert, R., Sato, M., Sick, M.: A case study in selective visualization of unsteady 3D flow. In: IEEE Visualization 2002, pp. 525–528. IEEE Computer Society Press, Boston, MA (2002)

    Chapter  Google Scholar 

  3. Becker, B., Lane, D., Max, N.: Unsteady flow volumes. In: IEEE Visualization 1995, pp. 329–335. IEEE Computer Society Press, Atlanta, GA (1995)

    Google Scholar 

  4. Cabral, B., Leedom, L.C.: Imaging vector fields using line integral convolution. Comput. Graph. 27(4), 263–270 (1993)

    Google Scholar 

  5. Forsell, L., Cohen, S.: Using line integral convolution for flow visualization: curvilinear grids, variable speed animation, and unsteady flows. IEEE Trans. Vis. Comput. Graph. 1(2), 133–141 (1995)

    Article  Google Scholar 

  6. Garth, C., Tricoche, X., Scheuermann, G.: Tracking of vector field singularities in unstructured 3D time-dependent datasets. In: IEEE Visualization 2004, pp. 329–336. IEEE Computer Society Press, Austin, TX (2004)

    Chapter  Google Scholar 

  7. Griebel, M., Dornseifer, T., Neunhoeffer, T.: Numerical Simulation in Fluid Dynamics, a Practical Introduction. SIAM, Philadelphia, PA (1998)

    Google Scholar 

  8. Ji, G., Shen, H., Wenger, R.: Volume tracking using higher dimensional isosurfacing. In: IEEE Visualization 2003, pp. 209–216. IEEE Computer Society Press, Seattle, WA (2003)

    Google Scholar 

  9. Jobard, B., Erlebacher, G., Hussaini, M.: Hardware-assisted texture advection for unsteady flow visalization. In: IEEE Visualization 2000, pp. 155–162. IEEE Computer Society Press, Salt Lake City, UT (2000)

    Google Scholar 

  10. Jobard, B., Erlebacher, G., Hussaini, M.: Lagrangian–Eulerian advection of noise and dye textures for unsteady flow visualization. IEEE Trans. Vis. Comput. Graph. 8(3), 211–222 (2002)

    Article  Google Scholar 

  11. Jonker, P.: Morphological operations on 3D and 4D images: from shape primitive detection to skeletonization. In: Discrete Geometry for Computer Imagery: 9th International Conference, DGCI 2000, pp. 371–391. Springer, Berlin, Heidelberg, Uppsala (2000)

    Chapter  Google Scholar 

  12. Jonker, P.: Skeletons in n dimensions using shape primitives. Pattern Recogn. Lett. 23(6), 677–686 (2002)

    Article  MATH  Google Scholar 

  13. Kuba, A., Palagyi, K.: A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recogn. Lett. 19(7), 613–627 (1998)

    Article  MATH  Google Scholar 

  14. Lane, D.: Scientific visualization of large-scale unsteady fluid flows. In: Scientific Visualization, pp. 125–145. IEEE Computer Society, Los Alamitos, CA (1997)

    Google Scholar 

  15. Liu, Z., Moorhead II, R.: Accelerated unsteady flow line integral convolution. IEEE Trans. Vis. Comput. Graph. 11(2), 113–125 (2005)

    Article  Google Scholar 

  16. Park, S., Budge, B., Linsen, L., Hamann, B., Joy, K.: Dense geometric flow visualization. In: Brodlie, K., Duke, D., Joy, K. (eds.) Proceedings of Eurographics/IEEE-VGTC Symposium on Visualization 2005 (EuroVis 2005), pp. 21–28. Eurographics Association, Aire-la-Ville (2005)

    Google Scholar 

  17. Peikert, R., Roth, M.: The parallel vectors operator – a vector field visualization primitive. In: IEEE Visualization 1999, pp. 263–270. IEEE Computer Society Press, San Francisco, CA (1999)

    Google Scholar 

  18. Post, F., Vrolijk, B., Hauser, H., Laramee, R., Doleisch, H.: The state of the art in flow visualization: feature extraction and tracking. Comput. Graph. Forum 4(22), 775–792 (2003)

    Article  Google Scholar 

  19. Reinders, F., Post, F.H., Spoelder, H.: Attribute-based feature tracking. In: Data Visualization 1999, Proceedings of VisSym 1999, pp. 63–72. Eurographics Association, Vienna (1999)

    Google Scholar 

  20. Salzbrunn, T., Scheuermann, G.: Streamline predicates. IEEE Trans. Vis. Comput. Graph. 12(6), 1601–1612 (2006)

    Article  Google Scholar 

  21. Samtaney, R., Silver D., Zabusky, N., Cao, J.: Visualizing features and tracking their evolution. IEEE Comput. 27(7), 20–27 (1994)

    Google Scholar 

  22. Shen, H., Kao, D.: A new line integral convolution algorithm for visualizing time-varying flow fields. IEEE Trans. Vis. Comput. Graph. 4(2), 98–108 (1998)

    Article  Google Scholar 

  23. Shi, K., Theisel, H., Hauser, H., Weinkauf, T., Matkovic, K., Hege, H., Seidel, H.: Path line attributes – an information visualization approach to analyzing the dynamic behavior of 3D time-dependent flow fields. To appear in TopoInVis 2007

  24. Silver, D., Wang, X.: Tracking and visualizing turbulent 3d features. IEEE Trans. Vis. Comput. Graph. 3(2), 129–141 (1997)

    Article  Google Scholar 

  25. Sujudi, D., Haimes, R.: Identification of swirling flow in 3D vector fields. Tech. Rep. AIAA Paper 95-1715, American Institute of Aeronautics and Astronautics (1995)

  26. Theisel, H., Seidel, H.: Feature flow fields. In: Data Visualization 2003, Proceedings of VisSym 2003, pp. 141–148. Eurographics Association, Grenoble (2003)

    Google Scholar 

  27. Theisel, H., Weinkauf, T., Hege, H., Seidel, H.: Topological methods for 2D time-dependent vector fields based on streamlines and pathlines. IEEE Trans. Vis. Comput. Graph. 11(4), 383–394 (2005)

    Article  Google Scholar 

  28. Tricoche, X., Scheuermann, G., Hagen, H.: Topology-based visualization of time-dependent 2D vector fields. In: Data Visualization 2001, Proceedings of VisSym 2001, pp. 117–126. Eurographics Association, Ascona (2001)

    Google Scholar 

  29. Tricoche, X., Wischgoll, T., Scheuermann, G., Hagen, H.: Topological tracking for the visualization of time dependent two-dimensional flows. Comput. Graph. 26(2), 249–257 (2002)

    Article  Google Scholar 

  30. Verma, V., Kao, D., Pang, A.: PLIC: Bridging the gap between streamlines and LIC. In: IEEE Visualization 1999, pp. 341–348. IEEE Computer Society Press, San Francisco, CA (1999)

    Google Scholar 

  31. van Walsum, T., Post, F.H., Silver, D., Post, F.J.: Feature extraction and iconic visualization. IEEE Trans. Vis. Comput. Graph. 2(2), 111–119 (1996)

    Article  Google Scholar 

  32. Weigle, C., Banks, D.: Extracting iso-valued features in 4-dimensional scalar fields. In: Proceedings of the Symposium on Volume Visualization, pp. 103–110. ACM, Research Triangle Park, NC (1998)

    Chapter  Google Scholar 

  33. Weiskopf, D., Erlebacher, G., Ertl, T.: A texture-based framework for spacetime-coherent visualization of time-dependent vector fields. In: IEEE Visualization 2003, pp. 107–114. IEEE Computer Society Press, Seattle, WA (2003)

    Google Scholar 

  34. Westermann, R., Johnson, C., Ertl, T.: Topology-preserving smoothing of vector fields. IEEE Trans. Vis. Comput. Graph. 7(3), 222–229 (2001)

    Article  Google Scholar 

  35. van Wijk, J.: Image based flow visualization. In: ACM SIGGRAPH 2002, pp. 745–754. ACM, San Antonio, TX (2002)

    Google Scholar 

  36. Wischgoll, T., Scheuermann, G., Hagen, H.: Tracking closed streamlines in time-dependent planar flows. In: Ertl, T., Girod, B., Niemann, H., Seidel, H.P. (eds.) Vision, Modeling, and Visualization 2001, pp. 447–454. Aka, Berlin (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Salzbrunn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salzbrunn, T., Garth, C., Scheuermann, G. et al. Pathline predicates and unsteady flow structures. TVC 24, 1039–1051 (2008). https://doi.org/10.1007/s00371-007-0204-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0204-x

Keywords

Navigation