Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Direct detection of acetylene in air by continuous wave cavity ring-down spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Diode laser-based continuous wave cavity ring-down spectroscopy (cw-CRDS) in the near-infrared region has been used to measure the mixing ratio of acetylene (C2H2) in ambient air. Detection limits of 120 parts per trillion by volume (pptv) for 20 min and 340 pptv for 70 s acquisition time were achieved without sample pre-concentration, measuring on a C2H2 absorption line at 6565.620 cm−1 (∼1523 nm). Several indoor and outdoor air samples were collected at different locations in the Helsinki metropolitan area and analyzed using static-cell measurements. In addition, flow measurements of indoor and outdoor air have been performed continuously over several days with a time resolution of down to one minute. Baseline acetylene levels in the range of 0.4 to 3 parts per billion by volume (ppbv), with a maximum around midday and a minimum during the night, were measured. Sudden high mixing ratios of up to 60 ppbv were observed in outdoor air during daytime on a minute time scale. In general, the indoor mixing ratios were found to be higher than those in outdoor air. The acetylene levels correlated with the ambient CO levels and with outdoor temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Meinardi, D. Nissenson, B. Barletta, D. Dabdub, F.S. Rowland, D.R. Blake, Atmos. Environ. 42, 7915 (2008)

    Article  Google Scholar 

  2. Y. Liu, M. Shao, S. Lu, C. Chang, J.L. Wang, G. Chen, Atmos. Chem. Phys. 8, 1531 (2008)

    Article  ADS  Google Scholar 

  3. E. Velasco, B. Lamb, H. Westberg, E. Allwine, G. Sosa, J.L. Arriaga-Colina, B.T. Jobson, M.L. Alexander, P. Prazeller, W.B. Knighton, T.M. Rogers, M. Grutter, S.C. Herndon, C.E. Kolb, M. Zavala, B. Foy, R. Volkamer, L.T. Molina, M.J. Molina, Atmos. Chem. Phys. 7, 329 (2007)

    Article  ADS  Google Scholar 

  4. M. Kanakidou, B. Bonsang, J.C. Le Roulley, G. Lambert, D. Martin, G. Sennequier, Nature 333, 51 (1998)

    Article  ADS  Google Scholar 

  5. Y. Xiao, D.J. Jacob, S. Turquety, J. Geophys. Res. 112 (2007). doi:10.1029/2006JD008268

  6. H. Hellen, H. Hakola, T. Laurila, Atmos. Environ. 37, 1413 (2003)

    Article  Google Scholar 

  7. B. Barletta, S. Meinardi, I.J. Simpson, H. Khwaja, D.R. Blake, F.S. Rowland, Atmos. Environ. 36, 3429 (2002)

    Article  Google Scholar 

  8. A. Borbon, P. Coddeville, N. Locoge, J.C. Galloo, Chemosphere 57, 931 (2004)

    Article  Google Scholar 

  9. C. Badol, N. Locoge, T. Leonardis, J.C. Galloo, Sci. Total Environ. 389, 441 (2008)

    Article  Google Scholar 

  10. A.L. Swanson, N.J. Blake, E. Atlas, F. Flocke, D.R. Blake, F.S. Rowland, J. Geophys. Res.-Atmos. 108, 4065 (2003)

    Article  ADS  Google Scholar 

  11. D.E. Vogler, M.W. Sigrist, Appl. Phys. B 85, 349 (2006)

    Article  ADS  Google Scholar 

  12. L.D. Le, J.D. Tate, M.B. Seasholtz, M. Gupta, T. Owano, D. Baer, T. Knittel, A. Cowie, J. Zhu, Appl. Spectrosc. 62, 59 (2008)

    Article  ADS  Google Scholar 

  13. R.S. Blake, P.S. Monks, A.M. Ellis, Chem. Rev. 109, 861 (2009)

    Article  Google Scholar 

  14. J. Gouw, C. Warneke, Mass Spectrom. Rev. 26, 223 (2007)

    Article  Google Scholar 

  15. P. Hering, J.P. Lay, S. Stry (eds.), Laser in Environmental and Life Sciences (Springer, Berlin, 2004)

    Google Scholar 

  16. B.A. Paldus, A.A. Kachanov, Can. J. Phys. 83, 975 (2005)

    Article  ADS  Google Scholar 

  17. A.R. Awtry, J.H. Miller, Appl. Phys. B 75, 255 (2002)

    Article  ADS  Google Scholar 

  18. D.S. Baer, J.B. Paul, J.B. Gupta, A. O’Keefe, Appl. Phys. B 75, 261 (2002)

    Article  ADS  Google Scholar 

  19. Y. He, B.J. Orr, Appl. Phys. B 85, 355 (2006)

    Article  ADS  Google Scholar 

  20. F.M. Schmidt, A. Foltynowicz, W.G. Ma, T. Lock, O. Axner, Opt. Express 15, 10822 (2007)

    Article  ADS  Google Scholar 

  21. F.M. Schmidt, A. Foltynowicz, W.G. Ma, O. Axner, J. Opt. Soc. Am. B 24, 1392 (2007)

    Article  ADS  Google Scholar 

  22. A. Foltynowicz, W. Ma, O. Axner, Opt. Express 16, 14689 (2008)

    Article  ADS  Google Scholar 

  23. M. Pradhan, R.E. Lindley, R. Grilli, I.R. White, D. Martin, A.J. Orr-Ewing, Appl. Phys. B 90, 1 (2008)

    Article  ADS  Google Scholar 

  24. M. Pradhan, M.S.I. Aziz, R. Grilli, A.J. Orr-Ewing, Environ. Sci. Technol. 42, 7354 (2008)

    Article  Google Scholar 

  25. D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997)

    Article  ADS  Google Scholar 

  26. G. Berden, R. Engeln (eds.), Cavity Ring-Down Spectroscopy: Techniques and Applications (Blackwell, Wiltshire, 2009)

    Google Scholar 

  27. D.W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Macko, D. Romanini, S.N. Mikhailenko, O.V. Naumenko, S. Kassi, A. Jenouvrier, V.G. Tyuterev, A. Campargue, J. Mol. Spectrosc. 227, 90 (2004)

    Article  ADS  Google Scholar 

  29. H. Huang, K.K. Lehmann, Opt. Express 16, 15013 (2008)

    Article  ADS  Google Scholar 

  30. The HITRAN 2008 database (www.hitran.com)

  31. R. El Hachtouki, J. Vander Auwera, J. Mol. Spectrosc. 216, 355 (2002)

    Article  ADS  Google Scholar 

  32. L. Lundsberg-Nielsen, F. Hegelund, F. Nicolaisen, J. Mol. Spectrosc. 162, 230 (1993)

    Article  ADS  Google Scholar 

  33. The GEISA 2009 database (ether.ipsl.jussieu.fr)

  34. The FITYK software (www.unipress.waw.pl/fityk)

  35. The SMEAR research stations (www.atm.helsinki.fi/SMEAR)

  36. E. Grosjean, R.A. Rasmussen, D. Grosjean, Atmos. Environ. 32, 3371 (1998)

    Article  Google Scholar 

  37. The Air Quality Archive (www.airquality.co.uk/archive)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Halonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, F.M., Vaittinen, O., Metsälä, M. et al. Direct detection of acetylene in air by continuous wave cavity ring-down spectroscopy. Appl. Phys. B 101, 671–682 (2010). https://doi.org/10.1007/s00340-010-4027-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4027-5

Keywords

Navigation