Abstract
Diode laser-based continuous wave cavity ring-down spectroscopy (cw-CRDS) in the near-infrared region has been used to measure the mixing ratio of acetylene (C2H2) in ambient air. Detection limits of 120 parts per trillion by volume (pptv) for 20 min and 340 pptv for 70 s acquisition time were achieved without sample pre-concentration, measuring on a C2H2 absorption line at 6565.620 cm−1 (∼1523 nm). Several indoor and outdoor air samples were collected at different locations in the Helsinki metropolitan area and analyzed using static-cell measurements. In addition, flow measurements of indoor and outdoor air have been performed continuously over several days with a time resolution of down to one minute. Baseline acetylene levels in the range of 0.4 to 3 parts per billion by volume (ppbv), with a maximum around midday and a minimum during the night, were measured. Sudden high mixing ratios of up to 60 ppbv were observed in outdoor air during daytime on a minute time scale. In general, the indoor mixing ratios were found to be higher than those in outdoor air. The acetylene levels correlated with the ambient CO levels and with outdoor temperature.
Similar content being viewed by others
References
S. Meinardi, D. Nissenson, B. Barletta, D. Dabdub, F.S. Rowland, D.R. Blake, Atmos. Environ. 42, 7915 (2008)
Y. Liu, M. Shao, S. Lu, C. Chang, J.L. Wang, G. Chen, Atmos. Chem. Phys. 8, 1531 (2008)
E. Velasco, B. Lamb, H. Westberg, E. Allwine, G. Sosa, J.L. Arriaga-Colina, B.T. Jobson, M.L. Alexander, P. Prazeller, W.B. Knighton, T.M. Rogers, M. Grutter, S.C. Herndon, C.E. Kolb, M. Zavala, B. Foy, R. Volkamer, L.T. Molina, M.J. Molina, Atmos. Chem. Phys. 7, 329 (2007)
M. Kanakidou, B. Bonsang, J.C. Le Roulley, G. Lambert, D. Martin, G. Sennequier, Nature 333, 51 (1998)
Y. Xiao, D.J. Jacob, S. Turquety, J. Geophys. Res. 112 (2007). doi:10.1029/2006JD008268
H. Hellen, H. Hakola, T. Laurila, Atmos. Environ. 37, 1413 (2003)
B. Barletta, S. Meinardi, I.J. Simpson, H. Khwaja, D.R. Blake, F.S. Rowland, Atmos. Environ. 36, 3429 (2002)
A. Borbon, P. Coddeville, N. Locoge, J.C. Galloo, Chemosphere 57, 931 (2004)
C. Badol, N. Locoge, T. Leonardis, J.C. Galloo, Sci. Total Environ. 389, 441 (2008)
A.L. Swanson, N.J. Blake, E. Atlas, F. Flocke, D.R. Blake, F.S. Rowland, J. Geophys. Res.-Atmos. 108, 4065 (2003)
D.E. Vogler, M.W. Sigrist, Appl. Phys. B 85, 349 (2006)
L.D. Le, J.D. Tate, M.B. Seasholtz, M. Gupta, T. Owano, D. Baer, T. Knittel, A. Cowie, J. Zhu, Appl. Spectrosc. 62, 59 (2008)
R.S. Blake, P.S. Monks, A.M. Ellis, Chem. Rev. 109, 861 (2009)
J. Gouw, C. Warneke, Mass Spectrom. Rev. 26, 223 (2007)
P. Hering, J.P. Lay, S. Stry (eds.), Laser in Environmental and Life Sciences (Springer, Berlin, 2004)
B.A. Paldus, A.A. Kachanov, Can. J. Phys. 83, 975 (2005)
A.R. Awtry, J.H. Miller, Appl. Phys. B 75, 255 (2002)
D.S. Baer, J.B. Paul, J.B. Gupta, A. O’Keefe, Appl. Phys. B 75, 261 (2002)
Y. He, B.J. Orr, Appl. Phys. B 85, 355 (2006)
F.M. Schmidt, A. Foltynowicz, W.G. Ma, T. Lock, O. Axner, Opt. Express 15, 10822 (2007)
F.M. Schmidt, A. Foltynowicz, W.G. Ma, O. Axner, J. Opt. Soc. Am. B 24, 1392 (2007)
A. Foltynowicz, W. Ma, O. Axner, Opt. Express 16, 14689 (2008)
M. Pradhan, R.E. Lindley, R. Grilli, I.R. White, D. Martin, A.J. Orr-Ewing, Appl. Phys. B 90, 1 (2008)
M. Pradhan, M.S.I. Aziz, R. Grilli, A.J. Orr-Ewing, Environ. Sci. Technol. 42, 7354 (2008)
D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997)
G. Berden, R. Engeln (eds.), Cavity Ring-Down Spectroscopy: Techniques and Applications (Blackwell, Wiltshire, 2009)
D.W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963)
P. Macko, D. Romanini, S.N. Mikhailenko, O.V. Naumenko, S. Kassi, A. Jenouvrier, V.G. Tyuterev, A. Campargue, J. Mol. Spectrosc. 227, 90 (2004)
H. Huang, K.K. Lehmann, Opt. Express 16, 15013 (2008)
The HITRAN 2008 database (www.hitran.com)
R. El Hachtouki, J. Vander Auwera, J. Mol. Spectrosc. 216, 355 (2002)
L. Lundsberg-Nielsen, F. Hegelund, F. Nicolaisen, J. Mol. Spectrosc. 162, 230 (1993)
The GEISA 2009 database (ether.ipsl.jussieu.fr)
The FITYK software (www.unipress.waw.pl/fityk)
The SMEAR research stations (www.atm.helsinki.fi/SMEAR)
E. Grosjean, R.A. Rasmussen, D. Grosjean, Atmos. Environ. 32, 3371 (1998)
The Air Quality Archive (www.airquality.co.uk/archive)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schmidt, F.M., Vaittinen, O., Metsälä, M. et al. Direct detection of acetylene in air by continuous wave cavity ring-down spectroscopy. Appl. Phys. B 101, 671–682 (2010). https://doi.org/10.1007/s00340-010-4027-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00340-010-4027-5