Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Spatial quality improvement of a Ti:Sapphire laser beam by modal filtering

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a study on the improvement of the spatial quality of a laser beam, called modal filtering, suitable to high-energy lasers. The method is theoretically compared with the classical pinhole filtering technique in the case of an astigmatic Gaussian beam, illustrating, in this particular case, its efficiency for filtering low spatial frequencies. Experimental study of the modal filtering of a temporally chirped beam from a Ti:Sapphire chirped-pulse-amplification system is presented. Beam profile, wavefront and pulse duration after compression were measured, showing a dramatic improvement of beam quality and no modifications of the temporal distribution. High-order harmonic generation in a rare gas, a highly nonlinear process which is phase-matching dependent, was used to test the effect of the filter and showed a clear enhancement of the generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D. Strickland, G. Mourou, Optics Comm. 56, 219 (1985)

    Article  ADS  Google Scholar 

  2. V. Ramanathan et al., Rev. Sci. Instrum. 77, 103103 (2006)

    Article  ADS  Google Scholar 

  3. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 2006)

    Google Scholar 

  4. R. Paschotta, Opt. Express 14, 6069–6074 (2006)

    Article  ADS  Google Scholar 

  5. J.W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, Greenwood Village, 2005)

    Google Scholar 

  6. P.M. Celliers et al., Appl. Opt. 37, 2371–2378 (1998)

    Article  ADS  Google Scholar 

  7. S. Sinha et al., Appl. Opt. 45, 4947–4956 (2006)

    Article  ADS  Google Scholar 

  8. R.K. Tyson, Appl. Opt. 21, 787–793 (1982)

    Article  ADS  Google Scholar 

  9. H. Yan-Lan et al., Chin. Phys. B 19, 074215 (2010)

    Article  ADS  Google Scholar 

  10. S. Szatmári, Z. Bakonyi, P. Simon, Optics Commun. 134, 199 (1997)

    Article  ADS  Google Scholar 

  11. G. Doumy et al., Phys. Rev. E 69, 026402–1 (2004)

    Article  ADS  Google Scholar 

  12. A. Jullien et al., Opt. Lett. 30, 920 (2005)

    Article  ADS  Google Scholar 

  13. M. Nisoli, S. De Silvestri, O. Svelto, Appl. Phys. Lett. 68, 2793 (1996)

    Article  ADS  Google Scholar 

  14. A. Ksendzov et al., Appl. Opt. 47, 5728–5735 (2008)

    Article  ADS  Google Scholar 

  15. O. Wallner, W.R. Leeb, R. Flatscher, Proc. SPIE 4838, 668–679 (2003)

    Article  ADS  Google Scholar 

  16. J.A. Stratton, Electromagnetic Theory (McGraw-Hill Book Co., New York, 1941)

    MATH  Google Scholar 

  17. E. Snitzer, J. Opt. Soc. Am. 51, 491–498 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  18. E. Marcatili, R. Schmeltzer, Bell Syst. Tech. J. 43, 1783–1809 (1964)

    Article  Google Scholar 

  19. J.J. Degnan, Appl. Opt. 12, 1026 (1973)

    Article  ADS  Google Scholar 

  20. B. Lü, B. Zhang, B. Cai, J. Mod. Opt. 40, 1731–1743 (1993)

    Article  ADS  Google Scholar 

  21. M.W. Sasnett, Propagation of multimode laser beams—the M\(^2\) factor, in The Physics and Technology of Laser Resonators, ed. by D.R. Hall, P.E. Jackson (Hilger, New York, 1989), pp. 132–142

    Google Scholar 

  22. V.N. Mahajan, Optical Imaging and Aberrations: Part I (Ray Geometrical Optics SPIE Press, Bellingham, 1998)

    Book  Google Scholar 

  23. V.N. Mahajan, Optical Imaging and Aberrations: Part II (Wave Diffraction Optics SPIE Press, Bellingham, 2011)

    Google Scholar 

  24. K.S. Repasky et al., Appl. Opt. 36, 7 (1997)

    Article  Google Scholar 

  25. ISO 11146–1:2005 Lasers and laser-related equipments—Test methods for laser beam widths, divergence angles and beam propagation ratios

  26. A.E. Siegman, How to (Maybe) measure laser beam quality, in Diode Pumped Solid State Lasers: Applications and Issues, Vol. 17 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper MQ1

  27. J.R. Fienup, Appl. Opt. 21, 15 (1982)

    Article  Google Scholar 

  28. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, Hoboken, 2007)

    Google Scholar 

  29. C. Iaconis, I.A. Walmsley, Opt. Lett. 23, 792–794 (1998)

    Article  ADS  Google Scholar 

  30. E. Takahashi et al., J. Opt. Soc. Am. B 20, 158–165 (2003)

    Article  ADS  Google Scholar 

  31. W. Boutu et al., Phys. Rev. A 84, 053819 (2011)

    Article  ADS  Google Scholar 

  32. H.-C. Bandulet et al., J. Phys. B At. Mol. Opt. Phys. 41, 245602 (2008)

    Article  ADS  Google Scholar 

  33. M. Nisoli et al., Phys. Rev. Lett. 88, 033902 (2002)

    Article  ADS  Google Scholar 

  34. P. Villoresi et al., Opt. Lett. 29, 207 (2004)

    Article  ADS  Google Scholar 

  35. W. Boutu et al., Phys. Rev. A 84, 063406 (2011)

    Article  ADS  Google Scholar 

  36. S. Kazamias et al., Eur. Phys. J. D 21, 353–359 (2002)

    Article  ADS  Google Scholar 

  37. T. Auguste, O. Gobert, B. Carré, Phys. Rev. A 78, 033411 (2008)

    Article  ADS  Google Scholar 

  38. M.V. Ammosov, N.B. Delone, V.P. Krainov, Sov. Phys. JETP 64, 1191 (1986)

    Google Scholar 

  39. M. Lewenstein et al., Phys. Rev. A 49, 2117 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been sustained by ANR I-NanoX project and FEMTO-X-MAG. We thank Giovanni De Ninno and Romain Bachelard for constructive discussions and are also grateful to the Egide agency, the Triangle de la Physique network and the COST European network for their financial support in the framework of, respectively, the XUV-FISCH project, the XUV-PhLAGH project and the MP1203 action.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Mahieu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahieu, B., Gauthier, D., Perdrix, M. et al. Spatial quality improvement of a Ti:Sapphire laser beam by modal filtering. Appl. Phys. B 118, 47–60 (2015). https://doi.org/10.1007/s00340-014-5953-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5953-4

Keywords

Navigation