Abstract
Purpose
We conducted a phase I/II clinical trial to determine the safety and feasibility of combining vorinostat with 5-fluorouracil (5-FU) in patients with metastatic colorectal cancer (mCRC) and elevated intratumoral thymidylate synthase (TS).
Methods
Patients with mCRC who had failed all standard therapeutic options were eligible. Intratumoral TS mRNA expression and peripheral blood mononuclear cell (PBMC) histone acetylation were measured before and after 6 consecutive days of vorinostat treatment at 400 mg PO daily. 5-FU/LV were given on days 6 and 7 and repeated every 2 weeks, along with continuous daily vorinostat. Dose escalation occurred in cohorts of three to six patients.
Results
Ten patients were enrolled. Three dose levels were explored in the phase I portion of the study. Two dose-limiting toxicities (DLTs) were observed at the starting dose level, which resulted in dose de-escalation to levels −1 and −2. Given the occurrence of two DLTs at each of the dose levels, we were unable to establish a maximum tolerated dose (MTD). Two patients achieved significant disease stabilization for 4 and 6 months. Grade 3 and 4 toxicities included fatigue, thrombocytopenia and mucositis. Intratumoral TS downregulation ≥50% was observed in one patient only. Acetylation of histone 3 was observed in PBMCs following vorinostat treatment.
Conclusions
The study failed to establish a MTD and was terminated. The presence of PBMC histone acetylation indicates biological activity of vorinostat, however, consistent reductions in intratumoral TS mRNA were not observed. Alternate vorinostat dose-scheduling may alleviate the toxicity and achieve optimal TS downregulation.
Abbreviations
- CRC:
-
Colorectal cancer
- HDACi:
-
Histone deacetylase inhibitor
- TS:
-
Thymidylate synthase
- 5-FU:
-
5-Fluorouracil
- LV:
-
Leucovorin
- DLT:
-
Dose-limiting toxicity
- MTD:
-
Maximum tolerated dose
- PBMC:
-
Peripheral blood mononuclear cell
- CBC:
-
Complete blood count
References
Giacchetti S, Perpoint B, Zidani R, Le Bail N, Faggiuolo R, Focan C et al (2000) Phase III multicenter randomized trial of oxaliplatin added to chronomodulated fluorouracil-leucovorin as first-line treatment of metastatic colorectal cancer. J Clin Oncol 18:136–147
Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P et al (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355:1041–1047
Giantonio BJ, Catalano PJ, Meropol NJ, O’Dwyer PJ, Mitchell EP, Alberts SR et al (2007) Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 25:1539–1544
Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342
Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345
Lenz HJ, Van Cutsem E, Khambata-Ford S, Mayer RJ, Gold P, Stella P et al (2006) Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J Clin Oncol 24:4914–4921
Longley DB, Harkin DP, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338
Inoue T, Hibi K, Nakayama G, Komatsu Y, Fukuoka T, Kodera Y et al (2005) Expression level of thymidylate synthase is a good predictor of chemosensitivity to 5-fluorouracil in colorectal cancer. J Gastroenterol 40:143–147
Johnston PG, Lenz HJ, Leichman CG, Danenberg KD, Allegra CJ, Danenberg PV et al (1995) Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res 55:1407–1412
Shirota Y, Stoehlmacher J, Brabender J, Xiong YP, Uetake H, Danenberg KD et al (2001) ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol 19:4298–4304
Popat S, Matakidou A, Houlston RS (2004) Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J Clin Oncol 22:529–536
Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F et al (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280:26729–26734
Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23
Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458
Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528
Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA et al (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci U S A 95:3003–3007
Richon VM, Garcia-Vargas J, Hardwick JS (2009) Development of vorinostat: current applications and future perspectives for cancer therapy. Cancer Lett 280:201–210
Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252
Zhang W, Peyton M, Xie Y, Soh J, Minna JD, Gazdar AF et al (2009) Histone deacetylase inhibitor romidepsin enhances anti-tumor effect of erlotinib in non-small cell lung cancer (NSCLC) cell lines. J Thorac Oncol 4:161–166
Zhang QL, Wang L, Zhang YW, Jiang XX, Yang F, Wu WL et al (2009) The proteasome inhibitor bortezomib interacts synergistically with the histone deacetylase inhibitor suberoylanilide hydroxamic acid to induce T-leukemia/lymphoma cells apoptosis. Leukemia 23:1507–1514
Tumber A, Collins LS, Petersen KD, Thougaard A, Christiansen SJ, Dejligbjerg M et al (2007) The histone deacetylase inhibitor PXD101 synergises with 5-fluorouracil to inhibit colon cancer cell growth in vitro and in vivo. Cancer Chemother Pharmacol 60:275–283
Lee JH, Park JH, Jung Y, Kim JH, Jong HS, Kim TY et al (2006) Histone deacetylase inhibitor enhances 5-fluorouracil cytotoxicity by down-regulating thymidylate synthase in human cancer cells. Mol Cancer Ther 5:3085–3095
Zhu WG, Otterson GA (2003) The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells. Curr Med Chem Anti-Cancer Agents 3:187–199
Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K (2003) Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 101:3236–3239
Fuino L, Bali P, Wittmann S, Donapaty S, Guo F, Yamaguchi H et al (2003) Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther 2:971–984
Pitts TM, Morrow M, Kaufman SA, Tentler JJ, Eckhardt SG (2009) Vorinostat and bortezomib exert synergistic antiproliferative and proapoptotic effects in colon cancer cell models. Mol Cancer Ther 8:342–349
Fazzone W, Wilson PM, Labonte MJ, Lenz HJ, Ladner RD (2009) Histone deacetylase inhibitors suppress thymidylate synthase gene expression and synergize with the fluoropyrimidines in colon cancer cells. Int J Cancer 125:463–473
Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK (2003) Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2:151–163
Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A 97:10014–10019
Labonte MJ, Wilson PM, Fazzone W, Groshen S, Lenz HJ, Ladner RD (2009) DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines. BMC Med Genomics 2:67
Leichman CG, Lenz HJ, Leichman L, Danenberg K, Baranda J, Groshen S et al (1997) Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted-infusion fluorouracil and weekly leucovorin. J Clin Oncol 15:3223–3229
Bonner RF, Emmert-Buck M, Cole K, Pohida T, Chuaqui R, Goldstein S et al. (1997) Laser capture microdissection: molecular analysis of tissue. Science 278:1481, 1483
Azuma M, Shi M, Danenberg KD, Gardner H, Barrett C, Jacques CJ et al (2007) Serum lactate dehydrogenase levels and glycolysis significantly correlate with tumor VEGFA and VEGFR expression in metastatic CRC patients. Pharmacogenomics 8:1705–1713
Leichman CG, Lenz HJ, Leichman L, Danenberg K, Baranda J, Groshen S et al (1997) Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted-infusion fluorouracil and weekly leucovorin. J Clin Oncol 15:3223–3229
Lord RV, Salonga D, Danenberg KD, Peters JH, DeMeester TR, Park JM et al (2000) Telomerase reverse transcriptase expression is increased early in the Barrett’s metaplasia, dysplasia, adenocarcinoma sequence. J Gastrointest Surg 4:135–142
Koehler SE, Ladner RD (2004) Small interfering RNA-mediated suppression of dUTPase sensitizes cancer cell lines to thymidylate synthase inhibition. Mol Pharmacol 66:620–626
Wilson PM, Fazzone W, LaBonte MJ, Deng J, Neamati N, Ladner RD (2008) Novel opportunities for thymidylate metabolism as a therapeutic target. Mol Cancer Ther 7:3029–3037
Fakih MG, Pendyala L, Egorin MJ, Fetterly G, Espinoza-Delgado I, Ross M et al (2009) A phase I clinical trial of vorinostat in combination with sFULV2 in patients with refractory solid tumors. J Clin Oncol 27:15 s (suppl; abstr 4083)
Rothenberg ML, Oza AM, Bigelow RH, Berlin JD, Marshall JL, Ramanathan RK et al (2003) Superiority of oxaliplatin and fluorouracil-leucovorin compared with either therapy alone in patients with progressive colorectal cancer after irinotecan and fluorouracil-leucovorin: interim results of a phase III trial. J Clin Oncol 21:2059–2069
Fakih MG, Pendyala L, Fetterly G, Toth K, Zwiebel JA, Espinoza-Delgado I et al (2009) A phase I, pharmacokinetic and pharmacodynamic study on vorinostat in combination with 5-fluorouracil, leucovorin, and oxaliplatin in patients with refractory colorectal cancer. Clin Cancer Res 15:3189–3195
Kelly WK, O’Connor OA, Krug LM, Chiao JH, Heaney M, Curley T et al (2005) Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol 23:3923–3931
Kelly WK, Richon VM, O’Connor O, Curley T, MacGregor-Curtelli B, Tong W et al (2003) Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 9:3578–3588
Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84–90
Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N et al (2008) Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 409:581–589
Giles F, Fischer T, Cortes J, Garcia-Manero G, Beck J, Ravandi F et al (2006) A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 12:4628–4635
Acknowledgments
This study was funded by Merck & Co; NIH grant 5 P30CA14089-27I, the V Foundation for Cancer Research and the Dhont Family Foundation.
Author information
Authors and Affiliations
Corresponding author
Additional information
Peter M. Wilson and Anthony El-Khoueiry contributed equally in the preparation of this manuscript.
Rights and permissions
About this article
Cite this article
Wilson, P.M., El-Khoueiry, A., Iqbal, S. et al. A phase I/II trial of vorinostat in combination with 5-fluorouracil in patients with metastatic colorectal cancer who previously failed 5-FU-based chemotherapy. Cancer Chemother Pharmacol 65, 979–988 (2010). https://doi.org/10.1007/s00280-009-1236-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00280-009-1236-x