Abstract
Purpose
We present and evaluate a new automated method based on support vector machine (SVM) classification of whole-brain anatomical magnetic resonance imaging to discriminate between patients with Alzheimer’s disease (AD) and elderly control subjects.
Materials and methods
We studied 16 patients with AD [mean age ± standard deviation (SD) = 74.1 ± 5.2 years, mini-mental score examination (MMSE) = 23.1 ± 2.9] and 22 elderly controls (72.3 ± 5.0 years, MMSE = 28.5 ± 1.3). Three-dimensional T1-weighted MR images of each subject were automatically parcellated into regions of interest (ROIs). Based upon the characteristics of gray matter extracted from each ROI, we used an SVM algorithm to classify the subjects and statistical procedures based on bootstrap resampling to ensure the robustness of the results.
Results
We obtained 94.5% mean correct classification for AD and control subjects (mean specificity, 96.6%; mean sensitivity, 91.5%).
Conclusions
Our method has the potential in distinguishing patients with AD from elderly controls and therefore may help in the early diagnosis of AD.
Similar content being viewed by others
References
Brookmeyer R, Gray S, Kawas C (1998) Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health 88:1337–1342
Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366:2112–2117 doi:10.1016/S0140-6736(05)67889-0
Ramaroson H, Helmer C, Barberger-Gateau P, Letenneur L, Dartigues J (2003) Prevalence of dementia and Alzheimer’s disease among subjects aged 75 years or over: updated results of the PAQUID cohort. Rev Neurol (Paris) 159:405–411 (in French)
Winblad B, Wimo A (1999) Assessing the societal impact of acetylcholinesterase inhibitor therapies. Alzheimer Dis Assoc Disord 13(Suppl 2):S9–S19 doi:10.1097/00002093-199911002-00003
DeKosky ST, Marek K (2003) Looking backward to move forward: early detection of neurodegenerative disorders. Science 302:830–834 doi:10.1126/science.1090349
Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256:183–194 doi:10.1111/j.1365-2796.2004.01388.x
Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund L, Nordberg A, Bäckman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC (2004) Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256:240–246 doi:10.1111/j.1365-2796.2004.01380.x
Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–278 (discussion 278–284) doi:10.1016/0197-4580(95)00021-6
Bastos Leite AJ, Scheltens P, Barkhof F (2004) Pathological aging of the brain: an overview. Top Magn Reson Imaging 15:369–389 doi:10.1097/01.rmr.0000168070.90113.dc
Glodzik-Sobanska L, Rusinek H, Mosconi L, Li Y, Zhan J, de Santi S, Convit A, Rich K, Brys M, de Leon MJ (2005) The role of quantitative structural imaging in the early diagnosis of Alzheimer’s disease. Neuroimaging Clin N Am 15:803–826 doi:10.1016/j.nic.2005.09.004
Xu Y, Jack CR Jr, O’Brien PC, Kokmen E, Smith GE, Ivnik RJ, Boeve BF, Tangalos RG, Petersen RC (2000) Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 54:1760–1767
Frisoni GB, Laakso MP, Beltramello A, Geroldi C, Bianchetti A, Soininen H, Trabucchi M (1999) Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer’s disease. Neurology 52:91–100
Laakso MP, Soininen H, Partanen K, Lehtovirta M, Hallikainen M, Hänninen T, Helkala EL, Vainio P, Riekkinen PJS (1998) MRI of the hippocampus in Alzheimer’s disease: sensitivity, specificity, and analysis of the incorrectly classified subjects. Neurobiol Aging 19:23–31 doi:10.1016/S0197-4580(98)00006-2
Lehéricy S, Baulac M, Chiras J, Piérot L, Martin N, Pillon B, Deweer B, Dubois B, Marsault C (1994) Amygdalohippocampal MR volume measurements in the early stages of Alzheimer disease. Am J Neuroradiol 15:929–937
Jack CR Jr, Petersen RC, O’Brien PC, Tangalos EG (1992) MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42:183–188
Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hänninen T, Laakso MP, Hallikainen M, Vanhanen M, Nissinen A, Helkala E, Vainio P, Vanninen R, Partanen K, Soininen H (2004) Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging 25:303–310 doi:10.1016/S0197-4580(03)00084-8
Du AT, Schuff N, Amend D, Laakso MP, Hsu YY, Jagust WJ, Yaffe K, Kramer JH, Reed B, Norman D, Chui HC, Weiner MW (2001) Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 71:441–447 doi:10.1136/jnnp.71.4.441
De Santi S, de Leon MJ, Rusinek H, Convit A, Tarshish CY, Roche A, Tsui WH, Kandil E, Boppana M, Daisley K, Wang GJ, Schlyer D, Fowler J (2001) Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 22:529–539 doi:10.1016/S0197-4580(01)00230-5
Convit A, De Leon MJ, Tarshish C, De Santi S, Tsui W, Rusinek H, George A (1997) Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease. Neurobiol Aging 18:131–138 doi:10.1016/S0197-4580(97)00001-8
Chetelat G, Baron J (2003) Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. Neuroimage 18:525–541 doi:10.1016/S1053-8119(02)00026-5
Lao Z, Shen D, Xue Z, Karacali B, Resnick SM, Davatzikos C (2004) Morphological classification of brains via high-dimensional shape transformations and machine learning methods. Neuroimage 21:46–57 doi:10.1016/j.neuroimage.2003.09.027
Fan Y, Shen D, Davatzikos C (2005) Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM. Med Image Comput Comput Assist Interv Int Conf 8:1–8
Cortes C, Vapnik V (1995) Support-Vector Networks. Mach Learn 20:273–297
Fan Y, Batmanghelich N, Clark CM, Davatzikos C (2008) Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 39:1731–1743 doi:10.1016/j.neuroimage.2007.10.031
Klöppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, Fox NC, Jack CR Jr, Ashburner J, Frackowiak RSJ (2008) Automatic classification of MR scans in Alzheimer’s disease. Brain 131:681–689 doi:10.1093/brain/awm319
Vemuri P, Gunter JL, Senjem ML, Whitwell JL, Kantarci K, Knopman DS, Boeve BF, Petersen RC, Jack CR Jr (2008) Alzheimer’s disease diagnosis in individual subjects using structural MR images: Validation studies. Neuroimage 39:1186–1197 doi:10.1016/j.neuroimage.2007.09.073
Teipel SJ, Born C, Ewers M, Bokde ALW, Reiser MF, Möller H, Hampel H (2007) Multivariate deformation-based analysis of brain atrophy to predict Alzheimer’s disease in mild cognitive impairment. Neuroimage 38:13–24 doi:10.1016/j.neuroimage.2007.07.008
Davatzikos C, Fan Y, Wu X, Shen D, Resnick SM (2008) Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol Aging 29:514–523 doi:10.1016/j.neurobiolaging.2006.11.010
Davatzikos C, Resnick SM, Wu X, Parmpi P, Clark CM (2008) Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage 41:1220–1227 doi:10.1016/j.neuroimage.2008.03.050
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944
Morris JC (1993) The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43:2412–2414
Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198 doi:10.1016/0022-3956(75)90026-6
Benton AL (1968) Genuine memory deficits in dementia. Neuropsychologia 6:53–60 doi:10.1016/0028-3932(68)90038-9
Sano M, Stern Y, Mayeux R, Hartman S, Devanand DP (1987) A standardized technique for establishing the onset symptoms of probable Alzheimer’s disease. J Clin Exp Neuropsychol 9:65
Stern Y, Albert M, Brandt J, Jacobs DM, Tang MX, Marder K, Bell K, Sano M, Devanand DP, Bylsma F et al (1994) Utility of extrapyramidal signs and psychosis as predictors of cognitive and functional decline, nursing home admission, and death in Alzheimer’s disease: prospective analyses from the Predictors Study. Neurology 44:2300–2307
Stern Y, Mayeux R, Sano M, Hauser WA, Bush T (1987) Predictors of disease course in patients with probable Alzheimer’s disease. Neurology 37:1649–1653
Grober E, Buschke H (1987) Genuine memory deficits in dementia. Dev Neuropsychol 3:13–36
Goldblum MC, Gomez CM, Dalla Barba G, Boller F, Deweer B, Hahn V, Dubois B (1998) The influence of semantic and perceptual encoding on recognition memory in Alzheimer’s disease. Neuropsychologia 36:717–729 doi:10.1016/S0028-3932(98)00007-4
Benton AL (1974) The revised visual retention test: clinical and experimental applications. Psychological Corporation, New York
Sirigu A, Cohen L, Duhamel JR, Pillon B, Dubois B, Agid Y (1995) A selective impairment of hand posture for object utilization in apraxia. Cortex 31:41–55
Mayeux R, Rosen W (1983) The dementias. Raven, New York
Deloche G, Hannequin D (1997) Test de dénomination orale d’images D080. Les Editions du Centre de Psychologie Appliquée, Paris
Kaplan E, Goodglass H, Weintraub S (1983) The Boston Naming Test. Lea and Febiger, Philadelphia
Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: a Frontal Assessment Battery at bedside. Neurology 55:1621–1626
Dorion AA, Sarazin M, Hasboun D, Hahn-Barma V, Dubois B, Zouaoui A, Marsault C, Duyme M (2002) Relationship between attentional performance and corpus callosum morphometry in patients with Alzheimer’s disease. Neuropsychologia 40:946–956 doi:10.1016/S0028-3932(01)00150-6
Robbins TW, James M, Owen AM, Sahakian BJ, Lawrence AD, McInnes L, Rabbitt PM (1998) A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: implications for theories of executive functioning and cognitive aging. Cambridge Neuropsychological Test Automated Battery. J Int Neuropsychol Soc 4:474–490 doi:10.1017/S1355617798455073
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289 doi:10.1006/nimg.2001.0978
Ashburner J, Friston K (2003) Image segmentation. In: Frackowiak R, Friston K, Frith C, Dolan R, Price C, Zeki S, Ashburner J, Penny W (eds) Human brain function, 2nd edn. Academic, San Diego, pp 695–706
Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme Medical Publisher, New York
Ashburner J, Friston KJ (1999) Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7:254–266 doi:10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
Ashburner J, Andersson JL, Friston KJ (2000) Image registration using a symmetric prior—in three dimensions. Hum Brain Mapp 9:212–225 doi:10.1002/(SICI)1097-0193(200004)9:4<212::AID-HBM3>3.0.CO;2-#
Redner R, Walker H (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev 26:195–239 doi:10.1137/1026034
Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, New York
Burton EJ, Karas G, Paling SM, Barber R, Williams ED, Ballard CG, McKeith IG, Scheltens P, Barkhof F, O’Brien JT (2002) Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry. Neuroimage 17:618–630 doi:10.1016/S1053-8119(02)91197-3
Barber R, McKeith IG, Ballard C, Gholkar A, O’Brien JT (2001) A comparison of medial and lateral temporal lobe atrophy in dementia with Lewy bodies and Alzheimer’s disease: magnetic resonance imaging volumetric study. Dement Geriatr Cogn Disord 12:198–205 doi:10.1159/000051258
Burton EJ, McKeith IG, Burn DJ, Williams ED, O’Brien JT (2004) Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain 127:791–800 doi:10.1093/brain/awh088
Ballmaier M, O’Brien JT, Burton EJ, Thompson PM, Rex DE, Narr KL, McKeith IG, DeLuca H, Toga AW (2004) Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer’s disease using cortical pattern matching: diagnosis and gender effects. Neuroimage 23:325–335 doi:10.1016/j.neuroimage.2004.04.026
Conflict of interest statement
S. Kinkingnéhun has a financial relationship with e(ye)BRAIN. B. Dubois and H. Benali consult for e(ye)BRAIN.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Magnin, B., Mesrob, L., Kinkingnéhun, S. et al. Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51, 73–83 (2009). https://doi.org/10.1007/s00234-008-0463-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00234-008-0463-x