Abstract
The Quantum Reverse Shannon Theorem states that any quantum channel can be simulated by an unlimited amount of shared entanglement and an amount of classical communication equal to the channel’s entanglement assisted classical capacity. In this paper, we provide a new proof of this theorem, which has previously been proved by Bennett, Devetak, Harrow, Shor, and Winter. Our proof has a clear structure being based on two recent information-theoretic results: one-shot Quantum State Merging and the Post-Selection Technique for quantum channels.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Shannon, C.E.: A mathematical theory of communication. Bell System Tech. J. 27, 379–423, 623–656, (1948)
Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. on Inf. Th. 48(10), 2637 (2002)
Holevo A.S.: The capacity of the quantum communication channel with general signal states. IEEE Trans. on Inf. Th. 44, 269 (1998)
Schumacher B., Westmoreland M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56, 131 (1997)
Devetak I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. on Inf. Th. 51, 44 (2005)
Lloyd S.: Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613 (1997)
Shor, P.W.: The quantum channel capacity and coherent information. Lecture notes, MSRI Workshop on Quantum Computation, 2002
Bennett, C.H., Devetak, I., Harrow, A.W., Shor, P.W., Winter, A.: The quantum reverse Shannon theorem. http://arxiv.org/abs/0912.5537v1 [quant-ph], 2009
Winter, A.: Compression of sources of probability distributions and density operators. http://arxiv.org/abs/quant-ph/0208131v1, 2002
Harrow, A.W.: Entanglement spread and clean resource inequalities. In: Proceedings 16th International Congress Mathematical Physics, 2009, RiverEdge, NJ: World Scientific, 2010
van Dam W., Hayden P.: Universal entanglement transformations without communication. Phys. Rev. A, Rapid Communication 67, 060302(R) (2003)
Renner R.: Security of quantum key distribution. Int. J. Quantum Inf. 6, 1 (2008)
Renner, R., Wolf, S.: Smooth Rényi entropy and applications. In: Proc. IEEE Intl. Sympo. Inf. Th. Piscataway, NJ: IEEE publishing, 2004, p. 233
Renner, R., König, R.: Universally composable privacy amplification against quantum adversaries. Springer Lecture Notes in Computer Science, 3378. Berlin-Feidelberg-NewYork: Springer, 2005, p. 407
Berta, M.: Single-shot quantum state merging. Master’s thesis, ETH Zurich, 2008. http://arxiv.org/abs/0912.4495v1 [quant-ph], 2009
Dupuis, F., Berta, M., Wullschleger, J., Renner, R.: The decoupling theorem. http://arxiv.org/abs/1012.6044v1 [quant-ph], 2010
König R., Renner R., Schaffner C.: The operational meaning of min- and max-entropy. IEEE Trans. on Inf. Th. 55(9), (2009)
Datta N.: Min- and max- relative entropies and a new entanglement monotone. IEEE Trans. on Inf. Th. 55(6), 2816 (2009)
Datta N.: Max- relative entropy of entanglement, alias log robustness. Int. J. Quant. Inf. 7, 475 (2009)
Mosonyi M., Datta N.: Generalized relative entropies and the capacity of classical-quantum channels. J. Math. Phys. 50, 072104 (2009)
Buscemi F., Datta N.: The quantum capcity of channels with arbitrarily correlated noise. IEEE Tran. on Inf. Th. 56, 1447 (2010)
Brandão F., Datta N.: One-shot rates for entanglement manipulation under non-entangling maps. IEEE Trans. on Inf. Th. 57, 1754 (2011)
Buscemi, F., Datta, N.: Entanglement cost in practical scenarios. Phys. Rev. Lett. 106, 130503 (2011). doi:10.1103/PhysRevLett.106.130503
Wang, L., Renner, R.: One-shot classical-quantum capacity and hypothesis testing. http://arxiv.org/abs/1007.5456v1 [quant-ph], 2010
Renes, J.M., Renner, R.: One-shot classical data compression with quantum side information and the distillation of common randomness or secret keys. http://arxiv.org/abs/1008.0452v2 [quant-ph], 2010
Renes, J.M., Renner, R.: Noisy channel coding via privacy amplification and information reconciliation. 2010. http://arxiv.org/abs/1012.4814v1 [quant-ph], 2010
Tomamichel, M., Schaffner, C., Smith, A., Renner, R.: Leftover hashing against quantum side information. IEEE Trans. on Inf. Th. 57(8) (2011)
Buscemi, F., Datta, N.: General theory of assisted entanglement distillation. http://arxiv.org/abd/1009.4464v1 [quant-ph], 2010
Buscemi F., Datta N.: Distilling entanglement from arbitrary resources. J. Math. Phys. 51, 102201 (2010)
Horodecki M., Oppenheim J., Winter A.: Partial quantum information. Nature 436, 673–676 (2005)
Horodecki M., Oppenheim J., Winter A.: Quantum state merging and negative information. Commun. Math. Phys. 269, 107 (2006)
Abeyesinghe A., Devetak I., Hayden P., Winter A.: The mother of all protocols: Restructuring quantum information’s family tree. Proc. Royal Soc. A 465(2108), 2537 (2009)
Slepian D., Wolf J.: Noiseless coding of correlated information sources. IEEE Trans. on Inf. Th. 19, 461 (1971)
Christandl M., König R., Renner R.: Post-selection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett. 102, 020504 (2009)
Kitaev A.Y.: Quantum computations: algorithms and error correction. Russ. Math. Surv. 52, 1191 (1997)
Stinespring W.: Positive functions on C*-algebras. Proc. Amer. Math. Soc. 6, 211 (1955)
Dupuis, F.: The Decoupling Approach to Quantum Information Theory. PhD thesis, Université de Montréal, 2009, http://arxiv.org/abs/1004.1641v1 [quant-ph], 2010
Tomamichel M., Colbeck R., Renner R.: A fully quantum asymptotic equipartition property. IEEE Trans. on Inf. Th. 55, 5840–5847 (2009)
Tomamichel M., Colbeck R., Renner R.: Duality between smooth min- and max-entropies. IEEE Trans. on Inf. Th. 56, 4674 (2010)
Hayden, P.: Quantum information theory via decoupling. Tutorial QIP Singapore, 2011. http://qip2011.quantumlah.org/images/QIPtutorial1.pdf, 2011
Oppenheim, J.: State redistribution as merging: introducing the coherent relay. http://arxiv.org/abs.0805.1065v1 [quant-ph], 2008
Uhlmann A.: The transition probability in the state space of a *-algebra. Rep. Math. Phys. 9, 273 (1976)
Jozsa R.: Fidelity for mixed quantum states. J. Mod. Optics 41, 2315 (1994)
Leung, D., Toner, B., Watrous, J.: Coherent state exchange in multi-prover quantum interactive proof systems. 2008. http://arxiv.org/abs/0804.4118v1 [quant-ph], 2008
Deutsch D.: Quantum computational networks. Proc. Royal Society London 73, 425 (1989)
Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge: Cambridge University Press, 2000
Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Audenaert K.M.R.: A sharp Fannes-type inequality for the von Neumann entropy. J. Phys. A 40, 8127–8136 (2007)
Berta M., Christandl M., Colbeck R., Renes J.M., Renner R.: The uncertainty principle in the presence of quantum memory. Nature Phys. 6, 659 (2010)
Paulsen, V.I.: Completely bounded maps and operator algebras. Cambridge: Cambridge University Press, 2002
Gruber, P.M., Wills, J.M.: Handbook of Convex Geometry, Vol. A. London: Elsevier Science Publishers, 1993
Acknowledgements
We thank Jürg Wullschleger and Andreas Winter for inspiring discussions and William Matthews and Debbie Leung for detailed feedback on the first version of this paper as well as for suggesting Figs. 2 and 4. MB and MC are supported by the Swiss National Science Foundation (grant PP00P2-128455) and the German Science Foundation (grants CH 843/1-1 and CH 843/2-1). RR acknowledges support from the Swiss National Science Foundation (grant No. 200021-119868). Part of this work was carried out while MB and MC were affiliated with the Faculty of Physics at the University of Munich in Germany.
Open Access
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M.B. Ruskai
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Berta, M., Christandl, M. & Renner, R. The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory. Commun. Math. Phys. 306, 579–615 (2011). https://doi.org/10.1007/s00220-011-1309-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-011-1309-7