Abstract
In the present work we introduce the notion of a renormalized solution for reaction–diffusion systems with entropy-dissipating reactions. We establish the global existence of renormalized solutions. In the case of integrable reaction terms our notion of a renormalized solution reduces to the usual notion of a weak solution. Our existence result in particular covers all reaction–diffusion systems involving a single reversible reaction with mass-action kinetics and (possibly species-dependent) Fick-law diffusion; more generally, it covers the case of systems of reversible reactions with mass-action kinetics which satisfy the detailed balance condition. For such equations the existence of any kind of solution in general was an open problem, thereby motivating the study of renormalized solutions.
Similar content being viewed by others
References
Alexandre R.: A definition of renormalized solutions for Boltzmann equation without cutoff. C. R. Acad. Sci. Paris Sér. I Math., 328(11), 987–991 (1999)
Alexandre R., Villani C.: On the Landau approximation in plasma physics. Ann. Inst. H. Poincaré Anal. Non Linéaire, 21(1), 61–95 (2004)
Alt H.W., Luckhaus S.: Quasilinear Elliptic-Parabolic Differential Equations. Math Z. 183, 311–341 (1983)
Bothe D., Pierre M.: Quasi-steady-state approximation for a reaction–diffusion system with fast intermediate. J. Math. Anal. Appl. 368(1), 120–132 (2010)
Canizo J.A., Desvillettes L., Fellner K.: Improved duality estimates and applications to reaction–diffusion equations. Comm. Partial Differ. Equ. 39, 1185–1204 (2014)
Cristina Caputo M., Vasseur A.: Global regularity of solutions to systems of reaction–diffusion with sub-quadratic growth in any dimension. Comm. Partial Differ. Equ., 34, 1228–1250 (2009)
Dal Maso G., Murat F., Orsina L., Prignet A.: Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28, 741–808 (1999)
Desvillettes L., Fellner K.: Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations. J. Math. Anal. Appl. 319, 157–176 (2006)
Desvillettes, L., Fellner, K.: Entropy methods for reaction–diffusion equations with degenerate diffusion arising in reversible chemistry. accepted for the Proceedings of the Equadiff (2007)
Desvillettes L., Fellner K.: Entropy methods for reaction–diffusion systems. Discrete Contin. Dyn. Syst. Suppl. 24, 304–312 (2007)
Desvillettes L., Fellner K.: Entropy methods for reaction–diffusion equations: slowly growing a-priori bounds. Rev. Mat. Iberoamericana 24, 407–431 (2008)
Desvillettes L., Fellner K., Pierre M., Vovelle J.: About global existence for quadratic systems of reaction–diffusion. Adv. Nonlinear Stud. 7, 491–511 (2007)
Diaz J.I., Veron L.: Local vanishing properties of solutions of elliptic and parabolic quasilinear equations. Trans. Amer. Math. Soc. 290(2), 787–814 (1985)
DiPerna R.J., Lions P.-L.: On the Fokker-Planck-Boltzmann equation. Commun. Math. Phys. 120, 1–23 (1988)
DiPerna R.J., Lions P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130(2), 321–366 (1989)
DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–517 (1989)
Feinberg M., Horn F.J.M.: Chemical mechanism structure and the coincidence of the stoichiometric and kinetic subspaces. Arch. Ration. Mech. Anal. 66, 83–97 (1977)
Fiebach A., Glitzky A., Linke A.: Uniform global bounds for solutions of an implicit voronoi finite volume method for reaction–diffusion problems. Numer. Math. 128(1), 31–72 (2014)
Gajewski H., Gröger K.: Reaction–diffusion processes of electrically charged species. Math. Nachr. 177(1), 109–130 (1996)
Gajewski, H., Skrypnik, I.V.: Existence and uniqueness results for reaction–diffusion processes of electrically charged species. Nonlinear Elliptic and Parabolic Problems, Vol. 64 Prog. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 151–188, 2005
Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)
Glitzky, A., Hünlich, R.: Global estimates and asymptotics for electro-reaction–diffusion systems in heterostructures. Appl. Anal. 66(3–4), 205–225 (1997)
Glitzky A., Mielke A.: A gradient structure for systems coupling reaction–diffusion effects in bulk and interfaces. Z. Angew. Math. Phys. 64(1), 29–52 (2013)
Goudon T., Vasseur A.: Regularity analysis for systems of reaction–diffusion equations. Ann. Sci. Éc. Norm. Supér. 368, 120–132 (2010)
Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)
Kräutle S.: Existence of global solutions of multicomponent reactive transport problems with mass action kinetics in porous media. J. Appl. Anal. Comput. 1(4), 497–515 (2011)
Liero M., Mielke A.: Gradient structures and geodesic convexity for reaction–diffusion systems. Phil. Trans. R. Soc. A 371, 20120346 (2013)
Mielke A.: A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24, 1329–1346 (2011)
Mielke, A., Haskovec, J., Markowich, P.: On uniform decay of the entropy for reaction–diffusion systems. J. Dynam. Differ. Equ. doi:10.1007/s10884-014-9394-x (2014, in press)
Mincheva M., Siegel D.: Stability of mass action reaction–diffusion systems. Nonlinear Anal. 56(8), 1105–1131 (2004)
Murat, F.: Solutiones renormalizadas de EDP elipticas non lineares. Technical report R93023 (1993)
Otto F.: Dynamics of labyrinthine pattern formation in magnetic fluids: A mean-field theory. Arch. Ration. Mech. Anal. 141(1), 63–103 (1998)
Pierre M.: Weak solutions and supersolutions in L 1 for reaction–diffusion systems. J. Evol. Equ. 3, 153–168 (2003)
Pierre M.: Global existence in reaction–diffusion systems with control of mass: a survey. Milan J. Math. 78(2), 417–455 (2010)
Pierre M., Schmitt D.: Blow-up in reaction–diffusion systems with dissipation of mass. SIAM J. Math. Anal. 28, 259–269 (1997)
Pierre M., Schmitt D.: Blow-up in reaction–diffusion systems with dissipation of mass. SIAM Rev. 42, 93–106 (2000)
Schuster S., Schuster R.: A generalization of Wegscheiders condition, Implications for properties of steady states and for quasi-steady-state approximation. J. Math. Chem. 3, 25–42 (1989)
Simon J.: Compact Sets in the Space L p(0, T ; B). Ann. Mat. Pura Appl. (4) 146(1), 65–96 (1986)
Villani C.: On the Cauchy problem for the Landau equation: sequential stability, global existence. Adv. Differ. Equ. 1(5), 793–816 (1996)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Alexander Mielke
Rights and permissions
About this article
Cite this article
Fischer, J. Global Existence of Renormalized Solutions to Entropy-Dissipating Reaction–Diffusion Systems. Arch Rational Mech Anal 218, 553–587 (2015). https://doi.org/10.1007/s00205-015-0866-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-015-0866-x