Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Global Existence of Renormalized Solutions to Entropy-Dissipating Reaction–Diffusion Systems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In the present work we introduce the notion of a renormalized solution for reaction–diffusion systems with entropy-dissipating reactions. We establish the global existence of renormalized solutions. In the case of integrable reaction terms our notion of a renormalized solution reduces to the usual notion of a weak solution. Our existence result in particular covers all reaction–diffusion systems involving a single reversible reaction with mass-action kinetics and (possibly species-dependent) Fick-law diffusion; more generally, it covers the case of systems of reversible reactions with mass-action kinetics which satisfy the detailed balance condition. For such equations the existence of any kind of solution in general was an open problem, thereby motivating the study of renormalized solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre R.: A definition of renormalized solutions for Boltzmann equation without cutoff. C. R. Acad. Sci. Paris Sér. I Math., 328(11), 987–991 (1999)

  2. Alexandre R., Villani C.: On the Landau approximation in plasma physics. Ann. Inst. H. Poincaré Anal. Non Linéaire, 21(1), 61–95 (2004)

  3. Alt H.W., Luckhaus S.: Quasilinear Elliptic-Parabolic Differential Equations. Math Z. 183, 311–341 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bothe D., Pierre M.: Quasi-steady-state approximation for a reaction–diffusion system with fast intermediate. J. Math. Anal. Appl. 368(1), 120–132 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Canizo J.A., Desvillettes L., Fellner K.: Improved duality estimates and applications to reaction–diffusion equations. Comm. Partial Differ. Equ. 39, 1185–1204 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cristina Caputo M., Vasseur A.: Global regularity of solutions to systems of reaction–diffusion with sub-quadratic growth in any dimension. Comm. Partial Differ. Equ., 34, 1228–1250 (2009)

  7. Dal Maso G., Murat F., Orsina L., Prignet A.: Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28, 741–808 (1999)

    MATH  MathSciNet  Google Scholar 

  8. Desvillettes L., Fellner K.: Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations. J. Math. Anal. Appl. 319, 157–176 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Desvillettes, L., Fellner, K.: Entropy methods for reaction–diffusion equations with degenerate diffusion arising in reversible chemistry. accepted for the Proceedings of the Equadiff (2007)

  10. Desvillettes L., Fellner K.: Entropy methods for reaction–diffusion systems. Discrete Contin. Dyn. Syst. Suppl. 24, 304–312 (2007)

    MathSciNet  Google Scholar 

  11. Desvillettes L., Fellner K.: Entropy methods for reaction–diffusion equations: slowly growing a-priori bounds. Rev. Mat. Iberoamericana 24, 407–431 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Desvillettes L., Fellner K., Pierre M., Vovelle J.: About global existence for quadratic systems of reaction–diffusion. Adv. Nonlinear Stud. 7, 491–511 (2007)

    MATH  MathSciNet  Google Scholar 

  13. Diaz J.I., Veron L.: Local vanishing properties of solutions of elliptic and parabolic quasilinear equations. Trans. Amer. Math. Soc. 290(2), 787–814 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. DiPerna R.J., Lions P.-L.: On the Fokker-Planck-Boltzmann equation. Commun. Math. Phys. 120, 1–23 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. DiPerna R.J., Lions P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130(2), 321–366 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–517 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Feinberg M., Horn F.J.M.: Chemical mechanism structure and the coincidence of the stoichiometric and kinetic subspaces. Arch. Ration. Mech. Anal. 66, 83–97 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fiebach A., Glitzky A., Linke A.: Uniform global bounds for solutions of an implicit voronoi finite volume method for reaction–diffusion problems. Numer. Math. 128(1), 31–72 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gajewski H., Gröger K.: Reaction–diffusion processes of electrically charged species. Math. Nachr. 177(1), 109–130 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gajewski, H., Skrypnik, I.V.: Existence and uniqueness results for reaction–diffusion processes of electrically charged species. Nonlinear Elliptic and Parabolic Problems, Vol. 64 Prog. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 151–188, 2005

  21. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  22. Glitzky, A., Hünlich, R.: Global estimates and asymptotics for electro-reaction–diffusion systems in heterostructures. Appl. Anal. 66(3–4), 205–225 (1997)

  23. Glitzky A., Mielke A.: A gradient structure for systems coupling reaction–diffusion effects in bulk and interfaces. Z. Angew. Math. Phys. 64(1), 29–52 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Goudon T., Vasseur A.: Regularity analysis for systems of reaction–diffusion equations. Ann. Sci. Éc. Norm. Supér. 368, 120–132 (2010)

    Google Scholar 

  25. Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kräutle S.: Existence of global solutions of multicomponent reactive transport problems with mass action kinetics in porous media. J. Appl. Anal. Comput. 1(4), 497–515 (2011)

    MATH  MathSciNet  Google Scholar 

  27. Liero M., Mielke A.: Gradient structures and geodesic convexity for reaction–diffusion systems. Phil. Trans. R. Soc. A 371, 20120346 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  28. Mielke A.: A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24, 1329–1346 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Mielke, A., Haskovec, J., Markowich, P.: On uniform decay of the entropy for reaction–diffusion systems. J. Dynam. Differ. Equ. doi:10.1007/s10884-014-9394-x (2014, in press)

  30. Mincheva M., Siegel D.: Stability of mass action reaction–diffusion systems. Nonlinear Anal. 56(8), 1105–1131 (2004)

    Article  MathSciNet  Google Scholar 

  31. Murat, F.: Solutiones renormalizadas de EDP elipticas non lineares. Technical report R93023 (1993)

  32. Otto F.: Dynamics of labyrinthine pattern formation in magnetic fluids: A mean-field theory. Arch. Ration. Mech. Anal. 141(1), 63–103 (1998)

    Article  MATH  Google Scholar 

  33. Pierre M.: Weak solutions and supersolutions in L 1 for reaction–diffusion systems. J. Evol. Equ. 3, 153–168 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Pierre M.: Global existence in reaction–diffusion systems with control of mass: a survey. Milan J. Math. 78(2), 417–455 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Pierre M., Schmitt D.: Blow-up in reaction–diffusion systems with dissipation of mass. SIAM J. Math. Anal. 28, 259–269 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  36. Pierre M., Schmitt D.: Blow-up in reaction–diffusion systems with dissipation of mass. SIAM Rev. 42, 93–106 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Schuster S., Schuster R.: A generalization of Wegscheiders condition, Implications for properties of steady states and for quasi-steady-state approximation. J. Math. Chem. 3, 25–42 (1989)

    Article  MathSciNet  Google Scholar 

  38. Simon J.: Compact Sets in the Space L p(0, T ; B). Ann. Mat. Pura Appl. (4) 146(1), 65–96 (1986)

    Article  ADS  Google Scholar 

  39. Villani C.: On the Cauchy problem for the Landau equation: sequential stability, global existence. Adv. Differ. Equ. 1(5), 793–816 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fischer.

Additional information

Communicated by Alexander Mielke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, J. Global Existence of Renormalized Solutions to Entropy-Dissipating Reaction–Diffusion Systems. Arch Rational Mech Anal 218, 553–587 (2015). https://doi.org/10.1007/s00205-015-0866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0866-x

Keywords

Navigation