Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Modeling and assessment of triple-frequency BDS precise point positioning

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The latest generation of GNSS satellites such as GPS BLOCK-IIF, Galileo and BDS are transmitting signals on three or more frequencies, thus having more choices in practice. At the same time, new challenges arise for integrating the new signals. This paper contributes to the modeling and assessment of triple-frequency PPP with BDS data. First, three triple-frequency PPP models are developed. The observation model and stochastic model are designed and extended to accommodate the third frequency. In particular, new biases such as differential code biases and inter-frequency biases as well as the parameterizations are addressed. Then, the relationships between different PPP models are discussed. To verify the triple-frequency PPP models, PPP tests with real triple-frequency data were performed in both static and kinematic scenarios. Results show that the three triple-frequency PPP models agree well with each other. Additional frequency has a marginal effect on the positioning accuracy in static PPP tests. However, the benefits of third frequency are significant in situations of where there is poor tracking and contaminated observations on frequencies B1 and B2 in kinematic PPP tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683. doi:10.1007/s00190-007-0135-3

    Article  Google Scholar 

  • Dai Z, Knedlik S, Loffeld O (2009) Instantaneous triple-frequency GPS cycle-slip detection and repair. Int J Navig Obs. Article ID 407231: doi:10.1155/2009/407231

  • Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83:191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Elsobeiey M (2015) Precise point positioning using triple-frequency GPS measurements. J Navig 68(3):480–492. doi:10.1017/S0373463314000824

  • Feng Y (2008) GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals. J Geod 82(12):847–862. doi:10.1007/s00190-008-0209-x

    Article  Google Scholar 

  • Feng Y, Li B (2009) Three carrier ambiguity resolutions: generalized problems, models and solutions. J Glob Position Syst 8(2):115–123. doi:10.5081/jgps.8.2.115

    Article  Google Scholar 

  • Feng Y, Rizos C (2005) Three carrier approaches for future global, regional and local GNSS positioning services: concepts and performance perspectives. In: Proceedings of ION GNSS-2005, pp 2277–2787, Long Beach, CA, 13–16 September

  • Feng Y, Rizos C, Higgins M (2007) Impact of multiple frequency GNSS signals on future regional GNSS services. IGNSS Symposium 2007, Sydney, Australia, 4–6 December

  • Forssell B, Martin-Neira M, Harris R (1997) Carrier phase ambiguity resolution in GNSS-2. In: Proceedings of ION GPS-97, pp 1727–1736, Kansas City, MO, 16–19 September

  • Geng J, Bock Y (2013) Triple-frequency GPS precise point positioning with rapid ambiguity resolution. J Geod 87(5):449–460. doi:10.1007/s00190-013-0619-2

    Article  Google Scholar 

  • Guo F, Zhang X, Wang J (2015) Timing group delay and differential code bias corrections for BeiDou positioning. J Geod 89(5):427–445. doi:10.1007/s00190-015-0788-2

    Article  Google Scholar 

  • Hatch R, Jung J, Enge P, Pervan B (2000) Civilian GPS: the benefits if three frequencies. GPS Solut 3(4):1–9. doi:10.1007/PL00012810

    Article  Google Scholar 

  • Jung J, Enge P, Pervan B (2000) Optimization of cascade integer resolution with three civil GPS frequencies. In: Proceedings of the ION GPS-2000, pp 2191–2200, Salt Lake City, UT, 19–22 September

  • Kouba J (2009) A guide to using international GNSS service (IGS) products. http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf

  • Lacy M, Reguzzoni M, Sanso F (2012) Real-time cycle slip detection in triple-frequency GNSS. GPS Solut 16(3):353–362. doi:10.1007/s10291-011-0237-5

    Article  Google Scholar 

  • Leick A (2003) GPS satellite surveying, 3rd edn. Wiley, New York

    Google Scholar 

  • Li B, Feng Y, Shen Y (2010) Three carrier ambiguity resolution: distance-independent performance demonstrated using semi-generated triple frequency GPS signals. GPS Solut 14(2):177–184. doi:10.1007/s10291-009-0131-6

    Article  Google Scholar 

  • Li M, Qu L, Zhao Q, Guo J, Su X, Li X (2014) Precise point positioning with the BeiDou navigation satellite system. Sensors 14(1):927–943. doi:10.3390/s140100927

    Article  Google Scholar 

  • Lindlohr W, Wells D (1985) GPS design using undifferenced carrier beat phase observations. Manuscr Geod 10(4):255–295

    Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222. doi:10.1007/s10291-012-0272-x

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS Conventions 2010 (IERS Technical Note No. 36). Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, p 179. ISBN:3-89888-989-6

  • Rizos C, Montenbruck O, Weber R, Neilan R, Hugentobler U (2013) The IGS MGEX Experiment as a milestone for a comprehensive multi-GNSS service. In: Proceedings of ION-PNT-2013, Honolulu, USA, 22–25 April

  • Satirapod C, Luansang M (2008) Comparing stochastic models used in GPS precise point positioning. Surv Rev 40(308):188–194. doi:10.1179/003962608X290988

    Article  Google Scholar 

  • Schaffrin B, Grafarend E (1986) Generating classes of equivalent linear models by nuisance parameter elimination, applications to GPS observations. Manuscr Geod 11:262–271

    Google Scholar 

  • Schönemann E, Becker M, Springer T (2011) A new approach for GNSS analysis in a multi-GNSS and multi-signal environment. J Geod Sci 1(3):204–214

    Google Scholar 

  • Simsky A (2006) Three’s the charm: triple-frequency combinations in future GNSS. InsideGNSS:38–41, July/August

  • Tang W, Deng C, Shi C, Liu J (2014) Triple-frequency carrier ambiguity resolution for Beidou navigation satellite system. GPS Solut 18(3):335–344. doi:10.1007/s10291-013-0333-9

    Article  Google Scholar 

  • Tegedor J, Øvstedal O (2014) Triple carrier precise point positioning (PPP) using GPS L5. Surv Rev 46(337):288–297. doi:10.1179/1752270613Y.0000000076

    Article  Google Scholar 

  • Teunissen PJG, Joosten P, Tiberius C (2002) A comparison of TCAR, CIR and LAMBDA GNSS ambiguity resolution. In: Proceedings of the ION GPS-2002, pp 2799–2808, Portland, OR, 24–27 September

  • Vollath U, Birnbach S, Landau H (1998) Analysis of three carrier ambiguity resolution (TCAR) technique for precise relative positioning in GNSS-2. In: Proceedings of ION GPS-98, pp 417–426, Nashville, TN, 15–18 September

  • Wang J, Satirapod C, Rizos C (2002) Stochastic assessment of GPS carrier phase measurements for precise static relative positioning. J Geod 76(2):95–104. doi:10.1007/s00190-001-0225-6

    Article  Google Scholar 

  • Wu J, Wu S, Hajj G, Bertiger W, Lichten S (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geod 18:91–98

    Google Scholar 

  • Xu G (2007) GPS: theory, algorithms and applications, 2nd edn. Springer, Berlin

    Google Scholar 

  • Zhang X, He X (2015) Performance analysis of triple-frequency ambiguity resolution with BeiDou observations. GPS Solut (online). doi:10.1007/s10291-014-0434-0

    Google Scholar 

  • Zhang X, Li P (2015) Benefits of the third frequency signal on cycle slip correction. GPS Solut (online). doi:10.1007/s10291-015-0456-2

    Google Scholar 

  • Zhang X, Liu J, Forsberg R (2006) Application of precise point positioning in airborne survey (in Chinese). Geomat Inform Sci Wuhan Univ 31(1):19–22

    Google Scholar 

  • Zhao Q, Sun B, Dai Z, Hu Z, Shi C, Liu J (2015) Real-time detection and repair of cycle slips in triple-frequency GNSS measurements. GPS Solut 19(3):381–391. doi:10.1007/s10291-014-0396-2

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge IGS Multi-GNSS Experiment (MGEX) for providing GNSS data and products. We appreciate anonymous reviewers for their valuable comments and improvements to this manuscript. Thanks also go to the National Natural Science Foundation of China (No: 41404006, No: 41474025) and the Open Research Fund of State Key Laboratory of Information Engineering in Survey, Mapping and Remote Sensing (No. 15P02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Zhang, X., Wang, J. et al. Modeling and assessment of triple-frequency BDS precise point positioning. J Geod 90, 1223–1235 (2016). https://doi.org/10.1007/s00190-016-0920-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0920-y

Keywords

Navigation