Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Stiffness properties analysis and enhancement in robotic drilling application

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Low stiffness and special stiffness properties limit the application of industrial robots in sophisticated manufacturing. The subject of the paper is to investigate the influence of robot stiffness properties on machining quality in drilling application. It is found that unidirectional thrust force could induce three-directional deformation of robot which will directly lead to hole defects during drilling procedure. Firstly, starting from the special characteristics of the robot, the key role of the preload pressing force is pointed out. Equivalent stiffness model under pre-load pressing force is established and stiffness promotion coefficient is defined to evaluate the effects of pressing force quantitatively. The matching criterion of robot drilling posture and thrust force is proposed, and the optimized value of pressing force can be predicted under the condition of stable machining. Limitation on hole diameter and roundness of robot drilling is evaluated too. By applying pre-load pressing force, the stiffness of robot drilling plane is markedly improved, and the drilling stability and hole diameter accuracy are also enhanced. Finally, the proposed method is verified by drilling experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Schneider U, Drust M, Ansaloni M, Lehmann C, Pellicciari M, Leali F, Gunnink JW, Verl A (2016) Improving robotic machining accuracy through experimental error investigation and modular compensation. Int J Adv Manuf Technol 85(1–4):3–15. https://doi.org/10.1007/s00170-014-6021-2

    Article  Google Scholar 

  2. Chen YH, Dong FH (2013) Robot machining: recent development and future research issues. Int J Adv Manuf Technol 66(9–12):1489–1497. https://doi.org/10.1007/s00170-012-4433-4

    Article  Google Scholar 

  3. International Federation of Robotics, Institute of Electrical and Electronics Engineers, Robotics and Automation Society (2013) 2013 44th international symposium on robotics (ISR 2013) Seoul, South Korea, 24–26 October 2013. IEEE, Piscataway

    Google Scholar 

  4. Wang GF, Dong HY, Guo YJ, Ke YL (2016) Dynamic cutting force modeling and experimental study of industrial robotic boring. Int J Adv Manuf Technol 86(1–4):179–190. https://doi.org/10.1007/s00170-015-8166-z

    Article  Google Scholar 

  5. Choi J, Min S, Dornfeld D A, Alam M, Tzong T (2003) Modeling of inter-layer gap formation in Drilling of a Multi-Layered Material. In: Proc. 6th CIRP workshop on modeling of machining, McMaster University, Hamilton, pp.36-41

  6. Slavkovic NR, Milutinovic DS, Glavonjic MM (2014) A method for off-line compensation of cutting force-induced errors in robotic machining by tool path modification. Int J Adv Manuf Technol 70(9–12):2083–2096. https://doi.org/10.1007/s00170-013-5421-z

    Article  Google Scholar 

  7. Pan ZX, Zhang H, Zhu ZQ, Wang JJ (2006) Chatter analysis of robotic machining process. J Mater Process Technol 173(3):301–309. https://doi.org/10.1016/j.jmatprotec.2005.11.033

    Article  Google Scholar 

  8. Cordes M, Hintze W (2017) Offline simulation of path deviation due to joint compliance and hysteresis for robot machining. Int J Adv Manuf Technol 90(1–4):1075–1083. https://doi.org/10.1007/s00170-016-9461-z

    Article  Google Scholar 

  9. Zhang H, Wang JJ, Zhang G, Gan ZX, Pan ZX, Cui HL, Zhu ZQ (2005) Machining with flexible manipulator: toward improving robotic machining performance. Ieee Asme Int C Adv:1127–1132. https://doi.org/10.1109/Aim.2005.1511161

  10. Abele E, Schützer K, Bauer J et al (2012) Tool path adaption based on optical measurement data for milling with industrial robots. Prod Eng Res Dev 6(4–5):459–465. https://doi.org/10.1007/s11740-012-0383-9

    Article  Google Scholar 

  11. Abele E, Weigold M, Rothenbucher S (2007) Modeling and identification of an industrial robot for machining applications. Cirp Ann Manuf Technol 56(1):387–390. https://doi.org/10.1016/j.cirp.2007.05.090

    Article  Google Scholar 

  12. Vosniakos GC, Matsas E (2010) Improving feasibility of robotic milling through robot placement optimisation. Robot Cim-Int Manuf 26(5):517–525. https://doi.org/10.1016/j.rcim.2010.04.001

    Article  Google Scholar 

  13. Zaeh MF, Roesch O (2014) Improvement of the machining accuracy of milling robots. Prod Eng 8(6):737–744. https://doi.org/10.1007/s11740-014-0558-7

    Article  Google Scholar 

  14. Furtado LFF, Villani E, Trabasso LG, Suterio R (2017) A method to improve the use of 6-dof robots as machine tools. Int J Adv Manuf Technol 92(5–8):2487–2502. https://doi.org/10.1007/s00170-017-0336-8

    Article  Google Scholar 

  15. DeVlieg R, Sitton K, Feikert E, Inman J (2002) ONCE (one sided cell end effector) robotic drilling system. SAE 2002 Automated Fastening Conference & Exposion, Chester, ENGLA. SAE technical papers 2002-01-2626. https://doi.org/10.4271/2002-01-2626

  16. Hempstead B, DeVlieg R, Mistry R, Sheridan M (2001) Drill and drive end effector. SAE 2001 Automated Fastening Conference & Exposition, Seattle, WA, USA. SAE technical papers 2001-01-2576. https://doi.org/10.4271/2001-01-2576

  17. Devlieg R (2011) High-accuracy robotic drilling/milling of 737 inboard flaps. SAE Int J of Aerosp 4(2):1373–1379. https://doi.org/10.4271/2011-01-2733

    Article  Google Scholar 

  18. Melkote SN, Newton TR, Hellstern C, Morehouse JB, Turner S (2010) Interfacial Burr Formation in Drilling of Stacked Aerospace Materials. Burrs - Analysis, Control and Removal: 89−+, Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-00568-8_10

    Google Scholar 

  19. Jie L (2013) The formation and effect of interlayer gap in dry drilling of stacked metal materials. Int J Adv Manuf Technol 69(5–8):1263–1272. https://doi.org/10.1007/s00170-013-5112-9

    Article  Google Scholar 

  20. Gao YH, Wu D, Nan CG, Ma XU, Dong YF, Chen K (2015) The interlayer gap and non-coaxiality in stack drilling. Int J Mach Tool Manu 99:68–76. https://doi.org/10.1016/j.ijmachtools.2015.09.007

    Article  Google Scholar 

  21. Guo YJ, Dong HY, Wang GF, Ke YL (2016) Vibration analysis and suppression in robotic boring process. Int J Mach Tool Manu 101:102–110. https://doi.org/10.1016/j.ijmachtools.2015.11.011

    Article  Google Scholar 

  22. Dumas C, Caro S, Garnier S, Furet B (2011) Joint stiffness identification of six-revolute industrial serial robots. Robot Cim-Int Manuf 27(4):881–888. https://doi.org/10.1016/j.rcim.2011.02.003

    Article  Google Scholar 

  23. Chen S, Kao I (2000) Conservative congruence transformation for joint and Cartesian stiffness matrices of robot hands and fingers. Int J Robot Res 19(9):835–847. https://doi.org/10.1002/rob.20047

    Article  Google Scholar 

  24. Bu Y, Liao WH, Tian W, Zhang J, Zhang L (2017) Stiffness analysis and optimization in robotic drilling application. Precis Eng 49:388–400. https://doi.org/10.1016/j.precisioneng.2017.04.001

    Article  Google Scholar 

  25. Olsson T, Haage M, Kihlman H, Johansson R, Nilsson K, Robertsson A, Bjorkman M, Isaksson R, Ossbahr G, Brogardh T (2010) Cost-efficient drilling using industrial robots with high-bandwidth force feedback. Robot Cim-Int Manuf 26(1):24–38. https://doi.org/10.1016/j.rcim.2009.01.002

    Article  Google Scholar 

  26. Thomson WT, Dahleh MD (1998) Theory of vibration with applications, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  27. Lauderbaugh LK (2009) Analysis of the effects of process parameters on exit burrs in drilling using a combined simulation and experimental approach. J Mater Process Technol 209(4):1909–1919. https://doi.org/10.1016/j.jmatprotec.2008.04.062

    Article  Google Scholar 

  28. Chang SSF, Bone GM (2010) Burr height model for vibration assisted drilling of aluminum 6061-T6. Precis Eng 34(3):369–375. https://doi.org/10.1016/j.precisioneng.2009.09.002

    Article  Google Scholar 

  29. Garnier S, Subrin K, Waiyagan K (2017) Modelling of robotic drilling. Procedia CIRP 58:416–421. https://doi.org/10.1016/j.procir.2017.03.246

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by “the National Natural Science Foundation of China (NO.51575273)”, “Funding of Jiangsu Innovation Program for Graduate Education (NO.KYLX15_0294)”, “the Fundamental Research Funds for Central Universities” and “the Fundamental Research Funds for the Central Universities (No. NP2018303)”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liao, W., Bu, Y. et al. Stiffness properties analysis and enhancement in robotic drilling application. Int J Adv Manuf Technol 106, 5539–5558 (2020). https://doi.org/10.1007/s00170-020-05011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05011-8

Keywords

Navigation