Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Katětov order on Borel ideals

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We study the Katětov order on Borel ideals. We prove two structural theorems (dichotomies), one for Borel ideals, the other for analytic P-ideals. We isolate nine important Borel ideals and study the Katětov order among them. We also present a list of fundamental open problems concerning the Katětov order on Borel ideals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arciga-Alejandre, M., Hrušák, M., Martinez-Ranero, C.: Invariance properties of almost disjoint families. J. Symb. Log. 78(3), 989–999 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartoszyński, T., Judah, H.: Set Theory. On the Structure of the Real Line. A K Peters, Wellesley, MA (1995)

    MATH  Google Scholar 

  3. Baumgartner, J.E.: Ultrafilters on \(\omega \). J. Symb. Log. 60(2), 624–639 (1995)

    Article  MATH  Google Scholar 

  4. Brendle, J., Flašková, J.: Generic existence of ultrafilters on the natural numbers. Fund. Math. 236(3), 201–245 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brendle, J., Hrušák, M.: Countable Fréchet Boolean groups: an independence result. J. Symb. Log. 74(3), 1061–1068 (2009)

    Article  MATH  Google Scholar 

  6. Brendle, J., Yatabe, S.: Forcing indestructibility of MAD families. Ann. Pure Appl. Logic 132(2–3), 271–312 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christensen, J.P.R.: Some results with relation to the control measure problem. In: Vector Space Measures and Applications (Proceedings Conference, University of Dublin, Dublin, 1977), II, volume 77 of Lecture Notes in Physics, pp. 27–34. Springer, Berlin (1978)

  8. Daguenet, M.: Emploi des filtres sur n dans l’étude descriptive des fonctions. Fundam. Math. 95, 11–33 (1977)

    MathSciNet  MATH  Google Scholar 

  9. Ilijas, F.: Analytic quotients: theory of liftings for quotients over analytic ideals on the integers. Mem. Am. Math. Soc. 148(702), xvi+177 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Flašková, J.: Description of some ultrafilters via I-ultrafilters. In: Proceedings of RIMS, vol. 1619 (2008)

  11. Hrušák, M.: MAD families and the rationals. Comment. Math. Univ. Carol. 42(2), 345–352 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Hrušák, M.: Combinatorics of filters and ideals. In: Set Theory and Its Applications, volume 533 of Contemporary Mathematics, pp. 29–69. American Mathematical Society, Providence, RI (2011)

  13. Hrušák, M., Ferreira, S.G.: Ordering MAD families a la Katětov. J. Symb. Log. 68(4), 1337–1353 (2003)

    Article  MATH  Google Scholar 

  14. Hrušák, M., Meza-Alcántara, D.: Katětov order, Fubini property and Hausdorff ultrafilters. Rend. Istit. Mat. Univ. Trieste 44, 503–511 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Hrušák, M., Minami, H.: Mathias–Prikry and Laver–Prikry type forcing. Ann. Pure Appl. Logic 165(3), 880–894 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hrušák, M., Zapletal, J.: Forcing with quotients. Arch. Math. Log. 47(7–8), 719–739 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Hrušák, M., Ramos García, U.A.: Malykhin’s problem. Adv. Math. (2014)

  18. Hrušák, M., Meza-Alcántara, D., Minami, H.: Pair-splitting, pair-reaping and cardinal invariants of \({F}_\sigma \) ideals. J. Symb. Log. 75(2), 661–677 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hrušák, M., Meza-Alcántara, D., Thümmel, E., Uzcategui, C.: Ramsey type properties of ideals. Accepted to Annals of Pure and Applied Logic (2017)

  20. Kanovei, V., Reeken, M.: New Radon–Nikodym ideals. Mathematika 47(1–2), 219–227 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Katětov, M.: Products of filters. Comment. Math. Univ. Carol. 9, 173–189 (1968)

    MathSciNet  MATH  Google Scholar 

  22. Kechris, A.S.: Classical Descriptive Set Theory, volume 156 of Graduate Texts in Mathematics. Springer, New York (1995)

    Book  Google Scholar 

  23. Kelley, J.L.: Measures on Boolean algebras. Pac. J. Math. 9, 1165–1177 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  24. Laczkovich, M., Recław, I.: Ideal limits of sequences of continuous functions. Fundam. Math. 203(1), 39–46 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Laflamme, C.: Zapping small filters. Proc. Am. Math. Soc. 114(2), 535–544 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Laflamme, C.: Filter games and combinatorial properties of strategies. In: Set Theory (Boise, ID, 1992–1994), volume 192 of Contemporary Mathematics, pp. 51–67. American Mathematical Society, Providence, RI (1996)

  27. Mazur, K.: \({F}_{\sigma }\)-ideals and \(\omega _{1}\omega _{1}^{*}\)-gaps in the boolean algebras \({\cal{P}}(\omega )/{I}\). Fundam. Math. 138(2), 103–111 (1991)

    MathSciNet  Google Scholar 

  28. Meza Alcántara, D: Ideals and Filters on Countable Sets. PhD thesis, UNAM México, (2009)

  29. Solecki, S.: Analytic ideals. Bull. Symb. Log. 2(3), 339–348 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Solecki, S.: Analytic ideals and their applications. Ann. Pure Appl. Log. 99(1–3), 51–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Solecki, S.: Filters and sequences. Fundam. Math. 163(3), 215–228 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The results of the paper were obtained in 2004. They were announced in [12] and included in D. Meza’s Ph.D. thesis [28] written under my supervision. Only now they apper in print with full proofs. I wish to thank D. Chodounský, O. Guzmán and D. Meza for commenting on preliminary versions of the paper. In particular, I would like to thank D. Chodounský for plotting the diagram out for me.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hrušák.

Additional information

The research was partially supported by PAPIIT Grant IN108014 and CONACYT Grant 177758.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrušák, M. Katětov order on Borel ideals. Arch. Math. Logic 56, 831–847 (2017). https://doi.org/10.1007/s00153-017-0543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-017-0543-x

Keywords

Mathematics Subject Classification

Navigation