Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Antimicrobial de-escalation in critically ill patients: a position statement from a task force of the European Society of Intensive Care Medicine (ESICM) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Critically Ill Patients Study Group (ESGCIP)

  • Conference Reports and Expert Panel
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Background

Antimicrobial de-escalation (ADE) is a strategy of antimicrobial stewardship, aiming at preventing the emergence of antimicrobial resistance (AMR) by decreasing the exposure to broad-spectrum antimicrobials. There is no high-quality research on ADE and its effects on AMR. Its definition varies and there is little evidence-based guidance for clinicians to use ADE in the intensive care unit (ICU).

Methods

A task force of 16 international experts was formed in November 2016 to provide with guidelines for clinical practice to develop questions targeted at defining ADE, its effects on the ICU population and to provide clinical guidance. Groups of 2 experts were assigned 1–2 questions each within their field of expertise to provide draft statements and rationale. A Delphi method, with 3 rounds and an agreement threshold of 70% was required to reach consensus.

Results

We present a comprehensive document with 13 statements, reviewing the evidence on the definition of ADE, its effects in the ICU population and providing guidance for clinicians in subsets of clinical scenarios where ADE may be considered.

Conclusion

ADE remains a topic of controversy due to the complexity of clinical scenarios where it may be applied and the absence of evidence to the effects it may have on antimicrobial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304–377. https://doi.org/10.1007/s00134-017-4683-6

    Article  PubMed  Google Scholar 

  2. Liu VX, Fielding-Singh V, Greene JD et al (2017) The timing of early antibiotics and hospital mortality in sepsis. Am J Respir Crit Care Med 196:856–863. https://doi.org/10.1164/rccm.201609-1848OC

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bhalodi AA, van Engelen TSR, Virk HS, Wiersinga WJ (2019) Impact of antimicrobial therapy on the gut microbiome. J Antimicrob Chemother 74:i6–i15. https://doi.org/10.1093/jac/dky530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Armand-Lefèvre L, Angebault C, Barbier F et al (2013) Emergence of imipenem-resistant gram-negative bacilli in intestinal flora of intensive care patients. Antimicrob Agents Chemother 57:1488–1495. https://doi.org/10.1128/AAC.01823-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Antonelli M, Mercurio G, Di Nunno S et al (2001) De-escalation antimicrobial chemotherapy in critically III patients: pros and cons. J Chemother. https://doi.org/10.1179/joc.2001.13.Supplement-2.218

    Article  PubMed  Google Scholar 

  6. Rello J, Gallego M, Mariscal D et al (1997) The value of routine microbial investigation in ventilator-associated pneumonia. Am J Respir Crit Care Med 156:196–200. https://doi.org/10.1164/ajrccm.156.1.9607030

    Article  CAS  PubMed  Google Scholar 

  7. Kollef MH (2001) Hospital-acquired pneumonia and de-escalation of antimicrobial treatment. Crit Care Med 29:1473–1475

    Article  CAS  PubMed  Google Scholar 

  8. Barlam TF, Cosgrove SE, Abbo LM et al (2016) Implementing an antibiotic stewardship program: guidelines by the infectious diseases society of America and the society for healthcare epidemiology of America. Clin Infect Dis 62:51–77. https://doi.org/10.1093/cid/ciw118

    Article  Google Scholar 

  9. Ruiz J, Ramirez P, Gordon M et al (2018) Antimicrobial stewardship programme in critical care medicine: a prospective interventional study. Med Intensiva. https://doi.org/10.1016/j.medin.2017.07.002

    Article  PubMed  Google Scholar 

  10. Tabah A, Cotta MO, Garnacho-Montero J et al (2016) A systematic review of the definitions, determinants, and clinical outcomes of antimicrobial de-escalation in the intensive care unit. Clin Infect Dis 62:1009–1017. https://doi.org/10.1093/cid/civ1199

    Article  PubMed  Google Scholar 

  11. Guyatt GH, Oxman AD, Vist GE et al (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336:924–926. https://doi.org/10.1136/bmj.39489.470347.AD

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kumar A, Roberts D, Wood KE et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. https://doi.org/10.1097/01.CCM.0000217961.75225.E9

    Article  PubMed  Google Scholar 

  13. Tamma PD, Cosgrove SE, Maragakis LL (2012) Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev 25:450–470. https://doi.org/10.1128/CMR.05041-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paul M, Lador A, Grozinsky-Glasberg S, Leibovici L (2014) Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst, Rev

    Book  Google Scholar 

  15. Kumar A, Safdar N, Kethireddy S, Chateau D (2010) A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med 38:1651–1664. https://doi.org/10.1097/CCM.0b013e3181e96b91

    Article  CAS  PubMed  Google Scholar 

  16. Woerther P-L, Lepeule R, Burdet C et al (2018) Carbapenems and alternative beta-lactams for the treatment of infections due to ESBL-producing Enterobacteriaceae: what impact on intestinal colonization resistance? Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2018.08.026

    Article  PubMed  Google Scholar 

  17. Álvarez-Lerma F, Alvarez B, Luque P et al (2006) Empiric broad-spectrum antibiotic therapy of nosocomial pneumonia in the intensive care unit: a prospective observational study. Crit Care 10:1–11. https://doi.org/10.1186/cc4919

    Article  Google Scholar 

  18. Giantsou E, Liratzopoulos N, Efraimidou E et al (2007) De-escalation therapy rates are significantly higher by bronchoalveolar lavage than by tracheal aspirate. Intensive Care Med 33:1533–1540. https://doi.org/10.1007/s00134-007-0619-x

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mokart D, Slehofer G, Lambert J et al (2014) De-escalation of antimicrobial treatment in neutropenic patients with severe sepsis: results from an observational study. Intensive Care Med 40:41–49. https://doi.org/10.1007/s00134-013-3148-9

    Article  CAS  PubMed  Google Scholar 

  20. Garnacho-Montero J, Gutiérrez-Pizarraya A, Escoresca-Ortega A et al (2014) De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med 40:32–40. https://doi.org/10.1007/s00134-013-3077-7

    Article  CAS  PubMed  Google Scholar 

  21. Leone M, Bechis C, Baumstarck K et al (2014) De-escalation versus continuation of empirical antimicrobial treatment in severe sepsis: a multicenter non-blinded randomized noninferiority trial. Intensive Care Med 40:1399–1408. https://doi.org/10.1007/s00134-014-3411-8

    Article  CAS  PubMed  Google Scholar 

  22. Paskovaty A, Pastores SM, Gedrimaite Z et al (2015) Antimicrobial de-escalation in septic cancer patients: is it safe to back down? Intensive Care Med 41:2022–2023. https://doi.org/10.1007/s00134-015-4016-6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Weiss E, Zahar JR, Garrouste-Orgeas M et al (2016) De-escalation of pivotal beta-lactam in ventilator-associated pneumonia does not impact outcome and marginally affects MDR acquisition. Intensive Care Med 42:2098–2100. https://doi.org/10.1007/s00134-016-4448-7

    Article  CAS  PubMed  Google Scholar 

  24. De Bus L, Denys W, Catteeuw J et al (2016) Impact of de-escalation of beta-lactam antibiotics on the emergence of antibiotic resistance in ICU patients: a retrospective observational study. Intensive Care Med 42:1029–1039. https://doi.org/10.1007/s00134-016-4301-z

    Article  CAS  PubMed  Google Scholar 

  25. Eachempati SR, Hydo LJ, Shou J, Barie PS (2009) Does de-escalation of antibiotic therapy for ventilator- associated pneumonia affect the likelihood of recurrent pneumonia or mortality in critically III surgical patients? J Trauma Inj Infect Crit Care 66:1343–1348. https://doi.org/10.1097/TA.0b013e31819dca4e

    Article  CAS  Google Scholar 

  26. De Waele JJ, Ravyts M, Depuydt P et al (2010) De-escalation after empirical meropenem treatment in the intensive care unit: fiction or reality? J Crit Care 25:641–646. https://doi.org/10.1016/j.jcrc.2009.11.007

    Article  PubMed  Google Scholar 

  27. Morel J, Casoetto J, Jospé R, et al (2010) De-escalation as part of a global strategy of empiric antibiotherapy management. A retrospective study in a medico-surgical intensive care unit. Crit Care https://doi.org/10.1186/cc9373

    Article  PubMed  PubMed Central  Google Scholar 

  28. Joung MK, Lee JA, Youn SM et al (2011) Impact of de-escalation therapy on clinical outcomes for intensive care unit-acquired pneumonia. Crit Care 15:R79. https://doi.org/10.1186/cc10072

    Article  PubMed  PubMed Central  Google Scholar 

  29. Heenen S, Jacobs F, Vincent JL (2012) Antibiotic strategies in severe nosocomial sepsis: why do we not de-escalate more often? Crit Care Med 40:1404–1409. https://doi.org/10.1097/CCM.0b013e3182416ecf

    Article  CAS  PubMed  Google Scholar 

  30. Kim JW, Chung J, Choi SH et al (2012) Early use of imipenem/cilastatin and vancomycin followed by de-escalation versus conventional antimicrobials without de-escalation for patients with hospital-acquired pneumonia in a medical ICU: a randomized clinical trial. Crit Care 16:R28. https://doi.org/10.1186/cc11197

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gonzalez L, Cravoisy A, Barraud D et al (2013) Factors influencing the implementation of antibiotic de-escalation and impact of this strategy in critically ill patients. Crit Care 17:R140. https://doi.org/10.1186/cc12819

    Article  PubMed  PubMed Central  Google Scholar 

  32. Knaak E, Cavalieri SJ, Elsasser GN et al (2013) Does antibiotic de-escalation for nosocomial pneumonia impact intensive care unit length of stay? Infect Dis Clin Pract 21:172–176. https://doi.org/10.1097/IPC.0b013e318279ee87

    Article  Google Scholar 

  33. Leone M, Garcin F, Bouvenot J et al (2007) Ventilator-associated pneumonia: breaking the vicious circle of antibiotic overuse. Crit Care Med 35:379–385. https://doi.org/10.1097/01.CCM.0000253404.69418.AA

    Article  PubMed  Google Scholar 

  34. Cowley MC, Ritchie DJ, Hampton N et al (2018) Outcomes associated with de-escalating anti-MRSA therapy in culture-negative nosocomial pneumonia. Chest 155:53–59. https://doi.org/10.1016/j.chest.2018.10.014

    Article  PubMed  Google Scholar 

  35. Madaras-Kelly K, Jones M, Remington R et al (2014) Development of an antibiotic spectrum score based on veterans affairs culture and susceptibility data for the purpose of measuring antibiotic de-escalation: a modified Delphi approach. Infect Control Hosp Epidemiol 35:1103–1113. https://doi.org/10.1086/677633

    Article  PubMed  PubMed Central  Google Scholar 

  36. Weiss E, Zahar JR, Lesprit P et al (2015) Elaboration of a consensual definition of de-escalation allowing a ranking of β-lactams. Clin Microbiol Infect 21:649.e1–649.e10. https://doi.org/10.1016/j.cmi.2015.03.013

    Article  CAS  Google Scholar 

  37. Moraes RB, Guillén JAV, Zabaleta WJC, Borges FK (2016) De-escalation, adequacy of antibiotic therapy and culture positivity in septic patients: an observational study. Rev Bras Ter Intensiva 28:315–322. https://doi.org/10.5935/0103-507X.20160044

    Article  PubMed  PubMed Central  Google Scholar 

  38. Trupka T, Fisher K, Micek ST et al (2017) Enhanced antimicrobial de-escalation for pneumonia in mechanically ventilated patients: a cross-over study. Crit Care 21:1–8. https://doi.org/10.1186/s13054-017-1772-4

    Article  Google Scholar 

  39. Khan RA, Aziz Z (2017) A retrospective study of antibiotic de-escalation in patients with ventilator-associated pneumonia in Malaysia. Int J Clin Pharm 39:906–912. https://doi.org/10.1007/s11096-017-0499-2

    Article  PubMed  Google Scholar 

  40. Jaffal K, Poissy J, Rouze A et al (2018) De - escalation of antifungal treatment in critically ill patients with suspected invasive Candida infection: incidence, associated factors, and safety. Ann Intensive Care. https://doi.org/10.1186/s13613-018-0392-8

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li H, Yang C-H, Huang L-O et al (2018) Antibiotics de-escalation in the treatment of ventilator-associated pneumonia in trauma patients: a retrospective study on propensity score matching method. Chin Med J (Engl) 131:1151. https://doi.org/10.4103/0366-6999.231529

    Article  Google Scholar 

  42. Bailly S, Leroy O, Montravers P et al (2015) Antifungal de-escalation was not associated with adverse outcome in critically ill patients treated for invasive candidiasis: post hoc analyses of the AmarCAND2 study data. Intensive Care Med. https://doi.org/10.1007/s00134-015-4053-1

    Article  PubMed  Google Scholar 

  43. Paul M, Dickstein Y, Raz-Pasteur A (2016) Antibiotic de-escalation for bloodstream infections and pneumonia: systematic review and meta-analysis. Clin Microbiol Infect 22:960–967. https://doi.org/10.1016/j.cmi.2016.05.023

    Article  CAS  PubMed  Google Scholar 

  44. Turza KC, Politano AD, Rosenberger LH et al (2016) De-escalation of antibiotics does not increase mortality in critically ill surgical patients. Surg Infect (Larchmt) 17:48–52. https://doi.org/10.1089/sur.2014.202

    Article  Google Scholar 

  45. Chastre J (2005) Antibiotic prescribing for ventilator-associated pneumonia: get it right from the beginning but be able to rapidly deescalate. Intensive Care Med 31:1463–1465. https://doi.org/10.1007/s00134-005-2696-z

    Article  PubMed  Google Scholar 

  46. Sawyer RG, Claridge JA, Nathens AB et al (2015) Trial of short-course antimicrobial therapy for intraabdominal infection. N Engl J Med 372:1996–2005. https://doi.org/10.1056/NEJMoa1411162

    Article  PubMed  PubMed Central  Google Scholar 

  47. Montravers P, Tubach F, Lescot T et al (2018) Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: the DURAPOP randomised clinical trial. Intensive Care Med 44:300–310. https://doi.org/10.1007/s00134-018-5088-x

    Article  CAS  PubMed  Google Scholar 

  48. Chastre J, Wolff M, Fagon JY et al (2003) Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. J Am Med Assoc 290:2588–2598. https://doi.org/10.1001/jama.290.19.2588

    Article  CAS  Google Scholar 

  49. Harris PNA, Peleg AY, Iredell J et al (2015) Meropenem versus piperacillin-tazobactam for definitive treatment of bloodstream infections due to ceftriaxone non-susceptible Escherichia coli and Klebsiella spp (the MERINO trial): study protocol for a randomised controlled trial. Trials. https://doi.org/10.1186/s13063-014-0541-9

    Article  PubMed  PubMed Central  Google Scholar 

  50. Timbrook TT, Morton JB, McConeghy KW et al (2016) The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis. https://doi.org/10.1093/cid/ciw649

    Article  PubMed  Google Scholar 

  51. Schlaffer K, Heil E, Leekha S et al (2017) Validation of an antimicrobial stewardship driven verigene® blood-culture gram-negative treatment algorithm to improve appropriateness of antibiotics. Open Forum Infect Dis 4:S624–S624. https://doi.org/10.1093/ofid/ofx163.1650

    Article  PubMed Central  Google Scholar 

  52. Magiorakos AP, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  PubMed  Google Scholar 

  53. Kadri SS, Adjemian J, Lai YL et al (2018) Difficult-to-treat resistance in Gram-negative bacteremia at 173 us hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis. https://doi.org/10.1093/cid/ciy378

    Article  PubMed  PubMed Central  Google Scholar 

  54. Joffe AR, Muscedere J, Marshall JC et al (2008) The safety of targeted antibiotic therapy for ventilator-associated pneumonia: a multicenter observational study. J Crit Care 23:82–90. https://doi.org/10.1016/j.jcrc.2007.12.006

    Article  PubMed  Google Scholar 

  55. Rello J, Vidaur L, Sandiumenge A et al (2004) De-escalation therapy in ventilator-associated pneumonia. Crit Care Med 32:2183–2190. https://doi.org/10.1097/01.CCM.0000145997.10438.28

    Article  PubMed  Google Scholar 

  56. Salahuddin N, Amer L, Joseph M et al (2016) Determinants of deescalation failure in critically ill patients with sepsis: a prospective cohort study. Crit Care Res Pract. https://doi.org/10.1155/2016/6794861

    Article  PubMed  PubMed Central  Google Scholar 

  57. Montravers P, Augustin P, Grall N et al (2016) Characteristics and outcomes of anti-infective de-escalation during health care-associated intra-abdominal infections. Crit Care. https://doi.org/10.1186/s13054-016-1267-8

    Article  PubMed  PubMed Central  Google Scholar 

  58. Souza-Oliveira AC, Cunha TM, da Passos LB et al (2016) Ventilator-associated pneumonia: the influence of bacterial resistance, prescription errors, and de-escalation of antimicrobial therapy on mortality rates. Braz J Infect Dis 20:437–443. https://doi.org/10.1016/j.bjid.2016.06.006

    Article  PubMed  Google Scholar 

  59. Gutiérrez-Gutiérrez B, Salamanca E, de Cueto M et al (2017) Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infect Dis 17:726–734. https://doi.org/10.1016/S1473-3099(17)30228-1

    Article  PubMed  Google Scholar 

  60. Paul M, Daikos GL, Durante-Mangoni E et al (2018) Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(18)30099-9

    Article  PubMed  Google Scholar 

  61. Dickstein Y, Lellouche J, Ben Dalak Amar M et al (2019) Treatment outcomes of colistin- and carbapenem-resistant Acinetobacter baumannii infections: an exploratory subgroup analysis of a randomized clinical trial. Clin Infect Dis 69:769–776. https://doi.org/10.1093/cid/ciy988

    Article  PubMed  Google Scholar 

  62. Pappas PG, Kauffman CA, Andes DR et al (2015) Clinical practice guideline for the management of candidiasis: 2016 update by the infectious Diseases Society of America. Clin Infect Dis. https://doi.org/10.1093/cid/civ933

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cornely OA, Bassetti M, Calandra T et al (2012) ESCMID guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect 18:19–37. https://doi.org/10.1111/1469-0691.12039

    Article  CAS  PubMed  Google Scholar 

  64. Pfaller MA, Castanheira M, Lockhart SR et al (2012) Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol. https://doi.org/10.1128/JCM.06112-11

    Article  PubMed  PubMed Central  Google Scholar 

  65. Vazquez J, Reboli AC, Pappas PG et al (2014) Evaluation of an early step-down strategy from intravenous anidulafungin to oral azole therapy for the treatment of candidemia and other forms of invasive candidiasis: results from an open-label trial. BMC Infect Dis. https://doi.org/10.1186/1471-2334-14-97

    Article  PubMed  PubMed Central  Google Scholar 

  66. Nucci M, Colombo AL, Petti M et al (2014) An open-label study of anidulafungin for the treatment of candidaemia/invasive candidiasis in Latin America. Mycoses. https://doi.org/10.1111/myc.12094

    Article  PubMed  Google Scholar 

  67. Mootsikapun P, Hsueh PR, Talwar D et al (2013) Intravenous anidulafungin followed optionally by oral voriconazole for the treatment of candidemia in Asian patients: results from an open-label Phase III trial. BMC Infect Dis. https://doi.org/10.1186/1471-2334-13-219

    Article  PubMed  PubMed Central  Google Scholar 

  68. Garnacho-Montero J, Diaz-Martin A, Canton-Bulnes L et al (2018) Initial antifungal strategy reduces mortality in critically ill patients with Candidemia: a propensity score-adjusted analysis of a multicenter study. Crit Care Med. https://doi.org/10.1097/CCM.0000000000002867

    Article  PubMed  Google Scholar 

  69. Ferreira D, Grenouillet F, Blasco G et al (2015) Outcomes associated with routine systemic antifungal therapy in critically ill patients with Candida colonization. Intensive Care Med. https://doi.org/10.1007/s00134-015-3791-4

    Article  PubMed  Google Scholar 

  70. Jensen RH, Johansen HK, Søes LM et al (2016) Posttreatment antifungal resistance among colonizing Candida isolates in candidemia patients: results from a systematic multicenter study. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.01763-15

    Article  PubMed  PubMed Central  Google Scholar 

  71. Vallabhaneni S, Cleveland AA, Farley MM et al (2015) Epidemiology and risk factors for echinocandin nonsusceptible Candida glabrata bloodstream infections: data from a large multisite population-based candidemia surveillance program, 2008–2014. Open Forum Infect Dis. https://doi.org/10.1093/ofid/ofv163

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sinnollareddy MG, Roberts JA, Lipman J et al (2015) Pharmacokinetic variability and exposures of fluconazole, anidulafungin, and caspofungin in intensive care unit patients: data from multinational Defining Antibiotic Levels in Intensive care unit (DALI) patients Study. Crit Care. https://doi.org/10.1186/s13054-015-0758-3

    Article  PubMed  PubMed Central  Google Scholar 

  73. Baddley JW, Patel M, Bhavnani SM et al (2008) Association of fluconazole pharmacodynamics with mortality in patients with candidemia. Antimicrob Agents Chemother 52:3022–3028. https://doi.org/10.1128/AAC.00116-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pfaller MA, Andes D, Diekema DJ et al (2010) Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Updat. https://doi.org/10.1016/j.drup.2010.09.002

    Article  PubMed  Google Scholar 

  75. Gharibian KN, Mueller BA (2016) Fluconazole dosing predictions in critically-ill patients receiving prolonged intermittent renal replacement therapy: a Monte Carlo simulation approach. Clin Nephrol. https://doi.org/10.5414/CN108824

    Article  PubMed  Google Scholar 

  76. Kollef MH, Morrow LE, Niederman MS et al (2006) Clinical characteristics and treatment patterns among patients with ventilator-associated pneumonia. Chest. https://doi.org/10.1378/chest.129.5.1210

    Article  PubMed  Google Scholar 

  77. Carlier M, Roberts JA, Stove V et al (2015) A simulation study reveals lack of pharmacokinetic/pharmacodynamic target attainment in de-escalated antibiotic therapy in critically ill patients. Antimicrob Agents Chemother 59:4689–4694. https://doi.org/10.1128/AAC.00409-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alshukairi A, Alserehi H, El-Saed A et al (2016) A de-escalation protocol for febrile neutropenia cases and its impact on carbapenem resistance: a retrospective, quasi-experimental single-center study. J Infect Public Health. https://doi.org/10.1016/j.jiph.2015.11.004

    Article  PubMed  Google Scholar 

  79. Kroll AL, Corrigan PA, Patel S, Hawks KG (2016) Evaluation of empiric antibiotic de-escalation in febrile neutropenia. J Oncol Pharm, Pract

    Book  Google Scholar 

  80. Averbuch D, Orasch C, Cordonnier C, et al. (2013) European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: summary of the 2011 4th European Conference on Infections in Leukemia. Haematologica https://doi.org/10.3324/haematol.2013.091025

    Article  PubMed  PubMed Central  Google Scholar 

  81. Palacios-Baena ZR, Delgado-Valverde M, Valiente Méndez A et al (2019) Impact of de-escalation on prognosis of patients with bacteremia due to Enterobacteriaceae: a post hoc analysis from a multicenter prospective cohort. Clin Infect Dis 69:956–962. https://doi.org/10.1093/cid/ciy1032

    Article  PubMed  Google Scholar 

  82. Iankova I, Thompson-Leduc P, Kirson NY et al (2018) Efficacy and safety of procalcitonin guidance in patients with suspected or confirmed sepsis. Crit Care Med 46:691–698. https://doi.org/10.1097/CCM.0000000000002928

    Article  CAS  PubMed  Google Scholar 

  83. Jensen JU, Hein L, Lundgren B et al (2011) Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med. https://doi.org/10.1097/CCM.0b013e31821e8791

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li C, Du X, Kuti JL, Nicolau DP (2007) Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00294-06

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zelenitsky S, Rubinstein E, Ariano R et al (2013) Vancomycin pharmacodynamics and survival in patients with methicillin-resistant Staphylococcus aureus-associated septic shock. Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2012.10.015

    Article  PubMed  Google Scholar 

  86. Forrest A, Nix DE, Ballow CH et al (1993) Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.37.5.1073

    Article  PubMed  PubMed Central  Google Scholar 

  87. Roberts JA, Paul SK, Akova M et al (2014) DALI: defining antibiotic levels in intensive care unit patients: are current ß-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis 58:1072–1083. https://doi.org/10.1093/cid/ciu027

    Article  CAS  PubMed  Google Scholar 

  88. López-Cortés LE, Rosso-Fernández C, Núñez-Núñez M et al (2017) Targeted simplification versus antipseudomonal broad-spectrum beta-lactams in patients with bloodstream infections due to Enterobacteriaceae (SIMPLIFY): a study protocol for a multicentre, open-label, phase III randomised, controlled, non-inferiority clin. BMJ Open 7:1–10. https://doi.org/10.1136/bmjopen-2016-015439

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Tabah.

Ethics declarations

Conflict of interest

Dr. Tabah has nothing to disclose. Dr. Bassetti reports grants and personal fees from PFIZER, grants and personal fees from MSD, grants and personal fees from MENARINI, grants and personal fees from ANGELINI, personal fees from ASTELLAS, personal fees from NABRIVA, grants and personal fees from PARATEK, personal fees from GILEAD, personal fees from BASILEA, personal fees from CIDARA, personal fees from MOLTENI, outside the submitted work. Dr. Kollef’s efforts are supported by the Barnes-Jewish Hospital Foundation. Dr. Zahar reports personal fees from MSD, personal fees from Correvio, personal fees from Pfizer, outside the submitted work. Dr. Paiva has nothing to disclose. Dr. Timsit reports grants and personal fees from Pfizer, grants and personal fees from Merck, personal fees from Astellas, grants and personal fees from Biomerieux, personal fees from 3 M, during the conduct of the study; personal fees from Nabriva, personal fees from Bayer pharma, outside the submitted work. Dr. Roberts reports personal fees and non-financial support from Biomerieux, grants and personal fees from MSD, personal fees from Astellas, personal fees from Infectopharm, grants from The Medicines Company, outside the submitted work. Dr. Schouten has nothing to disclose. Dr. Giamarellou has received research grants from Pfizer, MSD, Angelini. Dr. Rello reports personal fees from Navriba, grants from BAYER, personal fees from Pfizer, personal fees from Anchoagen, outside the submitted work. Dr. De Waele reports grants from Research Foundation Flanders, during the conduct of the study; other from Bayer, other from Pfizer, other from MSD, other from Grifols, other from Accelerate, outside the submitted work. Dr Shorr has served as a speaker for, received research support from, or been a consultant to: Astellas, Merck, Nabriva, Paratek, Shinogi, and Tetraphase. Dr. Leone reports personal fees from MSD, personal fees from Pfizer, during the conduct of the study; grants, personal fees and non-financial support from AMOMED, personal fees from AGUETTANT, personal fees from ASPEN, personal fees from OCTAPHARMA, personal fees from ORION, outside the submitted work. Dr. Poulakou reports personal fees from Angelini, personal fees from MSD, grants and personal fees from Pfizer, grants from Roche, outside the submitted work. Dr. Depuydt has nothing to disclose. Dr. Garnacho-Montero has nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabah, A., Bassetti, M., Kollef, M.H. et al. Antimicrobial de-escalation in critically ill patients: a position statement from a task force of the European Society of Intensive Care Medicine (ESICM) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Critically Ill Patients Study Group (ESGCIP). Intensive Care Med 46, 245–265 (2020). https://doi.org/10.1007/s00134-019-05866-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-019-05866-w

Keywords

Navigation