Abstract
Background
Antimicrobial de-escalation (ADE) is a strategy of antimicrobial stewardship, aiming at preventing the emergence of antimicrobial resistance (AMR) by decreasing the exposure to broad-spectrum antimicrobials. There is no high-quality research on ADE and its effects on AMR. Its definition varies and there is little evidence-based guidance for clinicians to use ADE in the intensive care unit (ICU).
Methods
A task force of 16 international experts was formed in November 2016 to provide with guidelines for clinical practice to develop questions targeted at defining ADE, its effects on the ICU population and to provide clinical guidance. Groups of 2 experts were assigned 1–2 questions each within their field of expertise to provide draft statements and rationale. A Delphi method, with 3 rounds and an agreement threshold of 70% was required to reach consensus.
Results
We present a comprehensive document with 13 statements, reviewing the evidence on the definition of ADE, its effects in the ICU population and providing guidance for clinicians in subsets of clinical scenarios where ADE may be considered.
Conclusion
ADE remains a topic of controversy due to the complexity of clinical scenarios where it may be applied and the absence of evidence to the effects it may have on antimicrobial resistance.
References
Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304–377. https://doi.org/10.1007/s00134-017-4683-6
Liu VX, Fielding-Singh V, Greene JD et al (2017) The timing of early antibiotics and hospital mortality in sepsis. Am J Respir Crit Care Med 196:856–863. https://doi.org/10.1164/rccm.201609-1848OC
Bhalodi AA, van Engelen TSR, Virk HS, Wiersinga WJ (2019) Impact of antimicrobial therapy on the gut microbiome. J Antimicrob Chemother 74:i6–i15. https://doi.org/10.1093/jac/dky530
Armand-Lefèvre L, Angebault C, Barbier F et al (2013) Emergence of imipenem-resistant gram-negative bacilli in intestinal flora of intensive care patients. Antimicrob Agents Chemother 57:1488–1495. https://doi.org/10.1128/AAC.01823-12
Antonelli M, Mercurio G, Di Nunno S et al (2001) De-escalation antimicrobial chemotherapy in critically III patients: pros and cons. J Chemother. https://doi.org/10.1179/joc.2001.13.Supplement-2.218
Rello J, Gallego M, Mariscal D et al (1997) The value of routine microbial investigation in ventilator-associated pneumonia. Am J Respir Crit Care Med 156:196–200. https://doi.org/10.1164/ajrccm.156.1.9607030
Kollef MH (2001) Hospital-acquired pneumonia and de-escalation of antimicrobial treatment. Crit Care Med 29:1473–1475
Barlam TF, Cosgrove SE, Abbo LM et al (2016) Implementing an antibiotic stewardship program: guidelines by the infectious diseases society of America and the society for healthcare epidemiology of America. Clin Infect Dis 62:51–77. https://doi.org/10.1093/cid/ciw118
Ruiz J, Ramirez P, Gordon M et al (2018) Antimicrobial stewardship programme in critical care medicine: a prospective interventional study. Med Intensiva. https://doi.org/10.1016/j.medin.2017.07.002
Tabah A, Cotta MO, Garnacho-Montero J et al (2016) A systematic review of the definitions, determinants, and clinical outcomes of antimicrobial de-escalation in the intensive care unit. Clin Infect Dis 62:1009–1017. https://doi.org/10.1093/cid/civ1199
Guyatt GH, Oxman AD, Vist GE et al (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336:924–926. https://doi.org/10.1136/bmj.39489.470347.AD
Kumar A, Roberts D, Wood KE et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. https://doi.org/10.1097/01.CCM.0000217961.75225.E9
Tamma PD, Cosgrove SE, Maragakis LL (2012) Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev 25:450–470. https://doi.org/10.1128/CMR.05041-11
Paul M, Lador A, Grozinsky-Glasberg S, Leibovici L (2014) Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst, Rev
Kumar A, Safdar N, Kethireddy S, Chateau D (2010) A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med 38:1651–1664. https://doi.org/10.1097/CCM.0b013e3181e96b91
Woerther P-L, Lepeule R, Burdet C et al (2018) Carbapenems and alternative beta-lactams for the treatment of infections due to ESBL-producing Enterobacteriaceae: what impact on intestinal colonization resistance? Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2018.08.026
Álvarez-Lerma F, Alvarez B, Luque P et al (2006) Empiric broad-spectrum antibiotic therapy of nosocomial pneumonia in the intensive care unit: a prospective observational study. Crit Care 10:1–11. https://doi.org/10.1186/cc4919
Giantsou E, Liratzopoulos N, Efraimidou E et al (2007) De-escalation therapy rates are significantly higher by bronchoalveolar lavage than by tracheal aspirate. Intensive Care Med 33:1533–1540. https://doi.org/10.1007/s00134-007-0619-x
Mokart D, Slehofer G, Lambert J et al (2014) De-escalation of antimicrobial treatment in neutropenic patients with severe sepsis: results from an observational study. Intensive Care Med 40:41–49. https://doi.org/10.1007/s00134-013-3148-9
Garnacho-Montero J, Gutiérrez-Pizarraya A, Escoresca-Ortega A et al (2014) De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med 40:32–40. https://doi.org/10.1007/s00134-013-3077-7
Leone M, Bechis C, Baumstarck K et al (2014) De-escalation versus continuation of empirical antimicrobial treatment in severe sepsis: a multicenter non-blinded randomized noninferiority trial. Intensive Care Med 40:1399–1408. https://doi.org/10.1007/s00134-014-3411-8
Paskovaty A, Pastores SM, Gedrimaite Z et al (2015) Antimicrobial de-escalation in septic cancer patients: is it safe to back down? Intensive Care Med 41:2022–2023. https://doi.org/10.1007/s00134-015-4016-6
Weiss E, Zahar JR, Garrouste-Orgeas M et al (2016) De-escalation of pivotal beta-lactam in ventilator-associated pneumonia does not impact outcome and marginally affects MDR acquisition. Intensive Care Med 42:2098–2100. https://doi.org/10.1007/s00134-016-4448-7
De Bus L, Denys W, Catteeuw J et al (2016) Impact of de-escalation of beta-lactam antibiotics on the emergence of antibiotic resistance in ICU patients: a retrospective observational study. Intensive Care Med 42:1029–1039. https://doi.org/10.1007/s00134-016-4301-z
Eachempati SR, Hydo LJ, Shou J, Barie PS (2009) Does de-escalation of antibiotic therapy for ventilator- associated pneumonia affect the likelihood of recurrent pneumonia or mortality in critically III surgical patients? J Trauma Inj Infect Crit Care 66:1343–1348. https://doi.org/10.1097/TA.0b013e31819dca4e
De Waele JJ, Ravyts M, Depuydt P et al (2010) De-escalation after empirical meropenem treatment in the intensive care unit: fiction or reality? J Crit Care 25:641–646. https://doi.org/10.1016/j.jcrc.2009.11.007
Morel J, Casoetto J, Jospé R, et al (2010) De-escalation as part of a global strategy of empiric antibiotherapy management. A retrospective study in a medico-surgical intensive care unit. Crit Care https://doi.org/10.1186/cc9373
Joung MK, Lee JA, Youn SM et al (2011) Impact of de-escalation therapy on clinical outcomes for intensive care unit-acquired pneumonia. Crit Care 15:R79. https://doi.org/10.1186/cc10072
Heenen S, Jacobs F, Vincent JL (2012) Antibiotic strategies in severe nosocomial sepsis: why do we not de-escalate more often? Crit Care Med 40:1404–1409. https://doi.org/10.1097/CCM.0b013e3182416ecf
Kim JW, Chung J, Choi SH et al (2012) Early use of imipenem/cilastatin and vancomycin followed by de-escalation versus conventional antimicrobials without de-escalation for patients with hospital-acquired pneumonia in a medical ICU: a randomized clinical trial. Crit Care 16:R28. https://doi.org/10.1186/cc11197
Gonzalez L, Cravoisy A, Barraud D et al (2013) Factors influencing the implementation of antibiotic de-escalation and impact of this strategy in critically ill patients. Crit Care 17:R140. https://doi.org/10.1186/cc12819
Knaak E, Cavalieri SJ, Elsasser GN et al (2013) Does antibiotic de-escalation for nosocomial pneumonia impact intensive care unit length of stay? Infect Dis Clin Pract 21:172–176. https://doi.org/10.1097/IPC.0b013e318279ee87
Leone M, Garcin F, Bouvenot J et al (2007) Ventilator-associated pneumonia: breaking the vicious circle of antibiotic overuse. Crit Care Med 35:379–385. https://doi.org/10.1097/01.CCM.0000253404.69418.AA
Cowley MC, Ritchie DJ, Hampton N et al (2018) Outcomes associated with de-escalating anti-MRSA therapy in culture-negative nosocomial pneumonia. Chest 155:53–59. https://doi.org/10.1016/j.chest.2018.10.014
Madaras-Kelly K, Jones M, Remington R et al (2014) Development of an antibiotic spectrum score based on veterans affairs culture and susceptibility data for the purpose of measuring antibiotic de-escalation: a modified Delphi approach. Infect Control Hosp Epidemiol 35:1103–1113. https://doi.org/10.1086/677633
Weiss E, Zahar JR, Lesprit P et al (2015) Elaboration of a consensual definition of de-escalation allowing a ranking of β-lactams. Clin Microbiol Infect 21:649.e1–649.e10. https://doi.org/10.1016/j.cmi.2015.03.013
Moraes RB, Guillén JAV, Zabaleta WJC, Borges FK (2016) De-escalation, adequacy of antibiotic therapy and culture positivity in septic patients: an observational study. Rev Bras Ter Intensiva 28:315–322. https://doi.org/10.5935/0103-507X.20160044
Trupka T, Fisher K, Micek ST et al (2017) Enhanced antimicrobial de-escalation for pneumonia in mechanically ventilated patients: a cross-over study. Crit Care 21:1–8. https://doi.org/10.1186/s13054-017-1772-4
Khan RA, Aziz Z (2017) A retrospective study of antibiotic de-escalation in patients with ventilator-associated pneumonia in Malaysia. Int J Clin Pharm 39:906–912. https://doi.org/10.1007/s11096-017-0499-2
Jaffal K, Poissy J, Rouze A et al (2018) De - escalation of antifungal treatment in critically ill patients with suspected invasive Candida infection: incidence, associated factors, and safety. Ann Intensive Care. https://doi.org/10.1186/s13613-018-0392-8
Li H, Yang C-H, Huang L-O et al (2018) Antibiotics de-escalation in the treatment of ventilator-associated pneumonia in trauma patients: a retrospective study on propensity score matching method. Chin Med J (Engl) 131:1151. https://doi.org/10.4103/0366-6999.231529
Bailly S, Leroy O, Montravers P et al (2015) Antifungal de-escalation was not associated with adverse outcome in critically ill patients treated for invasive candidiasis: post hoc analyses of the AmarCAND2 study data. Intensive Care Med. https://doi.org/10.1007/s00134-015-4053-1
Paul M, Dickstein Y, Raz-Pasteur A (2016) Antibiotic de-escalation for bloodstream infections and pneumonia: systematic review and meta-analysis. Clin Microbiol Infect 22:960–967. https://doi.org/10.1016/j.cmi.2016.05.023
Turza KC, Politano AD, Rosenberger LH et al (2016) De-escalation of antibiotics does not increase mortality in critically ill surgical patients. Surg Infect (Larchmt) 17:48–52. https://doi.org/10.1089/sur.2014.202
Chastre J (2005) Antibiotic prescribing for ventilator-associated pneumonia: get it right from the beginning but be able to rapidly deescalate. Intensive Care Med 31:1463–1465. https://doi.org/10.1007/s00134-005-2696-z
Sawyer RG, Claridge JA, Nathens AB et al (2015) Trial of short-course antimicrobial therapy for intraabdominal infection. N Engl J Med 372:1996–2005. https://doi.org/10.1056/NEJMoa1411162
Montravers P, Tubach F, Lescot T et al (2018) Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: the DURAPOP randomised clinical trial. Intensive Care Med 44:300–310. https://doi.org/10.1007/s00134-018-5088-x
Chastre J, Wolff M, Fagon JY et al (2003) Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. J Am Med Assoc 290:2588–2598. https://doi.org/10.1001/jama.290.19.2588
Harris PNA, Peleg AY, Iredell J et al (2015) Meropenem versus piperacillin-tazobactam for definitive treatment of bloodstream infections due to ceftriaxone non-susceptible Escherichia coli and Klebsiella spp (the MERINO trial): study protocol for a randomised controlled trial. Trials. https://doi.org/10.1186/s13063-014-0541-9
Timbrook TT, Morton JB, McConeghy KW et al (2016) The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis. https://doi.org/10.1093/cid/ciw649
Schlaffer K, Heil E, Leekha S et al (2017) Validation of an antimicrobial stewardship driven verigene® blood-culture gram-negative treatment algorithm to improve appropriateness of antibiotics. Open Forum Infect Dis 4:S624–S624. https://doi.org/10.1093/ofid/ofx163.1650
Magiorakos AP, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Kadri SS, Adjemian J, Lai YL et al (2018) Difficult-to-treat resistance in Gram-negative bacteremia at 173 us hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis. https://doi.org/10.1093/cid/ciy378
Joffe AR, Muscedere J, Marshall JC et al (2008) The safety of targeted antibiotic therapy for ventilator-associated pneumonia: a multicenter observational study. J Crit Care 23:82–90. https://doi.org/10.1016/j.jcrc.2007.12.006
Rello J, Vidaur L, Sandiumenge A et al (2004) De-escalation therapy in ventilator-associated pneumonia. Crit Care Med 32:2183–2190. https://doi.org/10.1097/01.CCM.0000145997.10438.28
Salahuddin N, Amer L, Joseph M et al (2016) Determinants of deescalation failure in critically ill patients with sepsis: a prospective cohort study. Crit Care Res Pract. https://doi.org/10.1155/2016/6794861
Montravers P, Augustin P, Grall N et al (2016) Characteristics and outcomes of anti-infective de-escalation during health care-associated intra-abdominal infections. Crit Care. https://doi.org/10.1186/s13054-016-1267-8
Souza-Oliveira AC, Cunha TM, da Passos LB et al (2016) Ventilator-associated pneumonia: the influence of bacterial resistance, prescription errors, and de-escalation of antimicrobial therapy on mortality rates. Braz J Infect Dis 20:437–443. https://doi.org/10.1016/j.bjid.2016.06.006
Gutiérrez-Gutiérrez B, Salamanca E, de Cueto M et al (2017) Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infect Dis 17:726–734. https://doi.org/10.1016/S1473-3099(17)30228-1
Paul M, Daikos GL, Durante-Mangoni E et al (2018) Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(18)30099-9
Dickstein Y, Lellouche J, Ben Dalak Amar M et al (2019) Treatment outcomes of colistin- and carbapenem-resistant Acinetobacter baumannii infections: an exploratory subgroup analysis of a randomized clinical trial. Clin Infect Dis 69:769–776. https://doi.org/10.1093/cid/ciy988
Pappas PG, Kauffman CA, Andes DR et al (2015) Clinical practice guideline for the management of candidiasis: 2016 update by the infectious Diseases Society of America. Clin Infect Dis. https://doi.org/10.1093/cid/civ933
Cornely OA, Bassetti M, Calandra T et al (2012) ESCMID guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect 18:19–37. https://doi.org/10.1111/1469-0691.12039
Pfaller MA, Castanheira M, Lockhart SR et al (2012) Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol. https://doi.org/10.1128/JCM.06112-11
Vazquez J, Reboli AC, Pappas PG et al (2014) Evaluation of an early step-down strategy from intravenous anidulafungin to oral azole therapy for the treatment of candidemia and other forms of invasive candidiasis: results from an open-label trial. BMC Infect Dis. https://doi.org/10.1186/1471-2334-14-97
Nucci M, Colombo AL, Petti M et al (2014) An open-label study of anidulafungin for the treatment of candidaemia/invasive candidiasis in Latin America. Mycoses. https://doi.org/10.1111/myc.12094
Mootsikapun P, Hsueh PR, Talwar D et al (2013) Intravenous anidulafungin followed optionally by oral voriconazole for the treatment of candidemia in Asian patients: results from an open-label Phase III trial. BMC Infect Dis. https://doi.org/10.1186/1471-2334-13-219
Garnacho-Montero J, Diaz-Martin A, Canton-Bulnes L et al (2018) Initial antifungal strategy reduces mortality in critically ill patients with Candidemia: a propensity score-adjusted analysis of a multicenter study. Crit Care Med. https://doi.org/10.1097/CCM.0000000000002867
Ferreira D, Grenouillet F, Blasco G et al (2015) Outcomes associated with routine systemic antifungal therapy in critically ill patients with Candida colonization. Intensive Care Med. https://doi.org/10.1007/s00134-015-3791-4
Jensen RH, Johansen HK, Søes LM et al (2016) Posttreatment antifungal resistance among colonizing Candida isolates in candidemia patients: results from a systematic multicenter study. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.01763-15
Vallabhaneni S, Cleveland AA, Farley MM et al (2015) Epidemiology and risk factors for echinocandin nonsusceptible Candida glabrata bloodstream infections: data from a large multisite population-based candidemia surveillance program, 2008–2014. Open Forum Infect Dis. https://doi.org/10.1093/ofid/ofv163
Sinnollareddy MG, Roberts JA, Lipman J et al (2015) Pharmacokinetic variability and exposures of fluconazole, anidulafungin, and caspofungin in intensive care unit patients: data from multinational Defining Antibiotic Levels in Intensive care unit (DALI) patients Study. Crit Care. https://doi.org/10.1186/s13054-015-0758-3
Baddley JW, Patel M, Bhavnani SM et al (2008) Association of fluconazole pharmacodynamics with mortality in patients with candidemia. Antimicrob Agents Chemother 52:3022–3028. https://doi.org/10.1128/AAC.00116-08
Pfaller MA, Andes D, Diekema DJ et al (2010) Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Updat. https://doi.org/10.1016/j.drup.2010.09.002
Gharibian KN, Mueller BA (2016) Fluconazole dosing predictions in critically-ill patients receiving prolonged intermittent renal replacement therapy: a Monte Carlo simulation approach. Clin Nephrol. https://doi.org/10.5414/CN108824
Kollef MH, Morrow LE, Niederman MS et al (2006) Clinical characteristics and treatment patterns among patients with ventilator-associated pneumonia. Chest. https://doi.org/10.1378/chest.129.5.1210
Carlier M, Roberts JA, Stove V et al (2015) A simulation study reveals lack of pharmacokinetic/pharmacodynamic target attainment in de-escalated antibiotic therapy in critically ill patients. Antimicrob Agents Chemother 59:4689–4694. https://doi.org/10.1128/AAC.00409-15
Alshukairi A, Alserehi H, El-Saed A et al (2016) A de-escalation protocol for febrile neutropenia cases and its impact on carbapenem resistance: a retrospective, quasi-experimental single-center study. J Infect Public Health. https://doi.org/10.1016/j.jiph.2015.11.004
Kroll AL, Corrigan PA, Patel S, Hawks KG (2016) Evaluation of empiric antibiotic de-escalation in febrile neutropenia. J Oncol Pharm, Pract
Averbuch D, Orasch C, Cordonnier C, et al. (2013) European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: summary of the 2011 4th European Conference on Infections in Leukemia. Haematologica https://doi.org/10.3324/haematol.2013.091025
Palacios-Baena ZR, Delgado-Valverde M, Valiente Méndez A et al (2019) Impact of de-escalation on prognosis of patients with bacteremia due to Enterobacteriaceae: a post hoc analysis from a multicenter prospective cohort. Clin Infect Dis 69:956–962. https://doi.org/10.1093/cid/ciy1032
Iankova I, Thompson-Leduc P, Kirson NY et al (2018) Efficacy and safety of procalcitonin guidance in patients with suspected or confirmed sepsis. Crit Care Med 46:691–698. https://doi.org/10.1097/CCM.0000000000002928
Jensen JU, Hein L, Lundgren B et al (2011) Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med. https://doi.org/10.1097/CCM.0b013e31821e8791
Li C, Du X, Kuti JL, Nicolau DP (2007) Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00294-06
Zelenitsky S, Rubinstein E, Ariano R et al (2013) Vancomycin pharmacodynamics and survival in patients with methicillin-resistant Staphylococcus aureus-associated septic shock. Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2012.10.015
Forrest A, Nix DE, Ballow CH et al (1993) Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.37.5.1073
Roberts JA, Paul SK, Akova M et al (2014) DALI: defining antibiotic levels in intensive care unit patients: are current ß-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis 58:1072–1083. https://doi.org/10.1093/cid/ciu027
López-Cortés LE, Rosso-Fernández C, Núñez-Núñez M et al (2017) Targeted simplification versus antipseudomonal broad-spectrum beta-lactams in patients with bloodstream infections due to Enterobacteriaceae (SIMPLIFY): a study protocol for a multicentre, open-label, phase III randomised, controlled, non-inferiority clin. BMJ Open 7:1–10. https://doi.org/10.1136/bmjopen-2016-015439
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Dr. Tabah has nothing to disclose. Dr. Bassetti reports grants and personal fees from PFIZER, grants and personal fees from MSD, grants and personal fees from MENARINI, grants and personal fees from ANGELINI, personal fees from ASTELLAS, personal fees from NABRIVA, grants and personal fees from PARATEK, personal fees from GILEAD, personal fees from BASILEA, personal fees from CIDARA, personal fees from MOLTENI, outside the submitted work. Dr. Kollef’s efforts are supported by the Barnes-Jewish Hospital Foundation. Dr. Zahar reports personal fees from MSD, personal fees from Correvio, personal fees from Pfizer, outside the submitted work. Dr. Paiva has nothing to disclose. Dr. Timsit reports grants and personal fees from Pfizer, grants and personal fees from Merck, personal fees from Astellas, grants and personal fees from Biomerieux, personal fees from 3 M, during the conduct of the study; personal fees from Nabriva, personal fees from Bayer pharma, outside the submitted work. Dr. Roberts reports personal fees and non-financial support from Biomerieux, grants and personal fees from MSD, personal fees from Astellas, personal fees from Infectopharm, grants from The Medicines Company, outside the submitted work. Dr. Schouten has nothing to disclose. Dr. Giamarellou has received research grants from Pfizer, MSD, Angelini. Dr. Rello reports personal fees from Navriba, grants from BAYER, personal fees from Pfizer, personal fees from Anchoagen, outside the submitted work. Dr. De Waele reports grants from Research Foundation Flanders, during the conduct of the study; other from Bayer, other from Pfizer, other from MSD, other from Grifols, other from Accelerate, outside the submitted work. Dr Shorr has served as a speaker for, received research support from, or been a consultant to: Astellas, Merck, Nabriva, Paratek, Shinogi, and Tetraphase. Dr. Leone reports personal fees from MSD, personal fees from Pfizer, during the conduct of the study; grants, personal fees and non-financial support from AMOMED, personal fees from AGUETTANT, personal fees from ASPEN, personal fees from OCTAPHARMA, personal fees from ORION, outside the submitted work. Dr. Poulakou reports personal fees from Angelini, personal fees from MSD, grants and personal fees from Pfizer, grants from Roche, outside the submitted work. Dr. Depuydt has nothing to disclose. Dr. Garnacho-Montero has nothing to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Tabah, A., Bassetti, M., Kollef, M.H. et al. Antimicrobial de-escalation in critically ill patients: a position statement from a task force of the European Society of Intensive Care Medicine (ESICM) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Critically Ill Patients Study Group (ESGCIP). Intensive Care Med 46, 245–265 (2020). https://doi.org/10.1007/s00134-019-05866-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00134-019-05866-w