Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Proximal parametric-margin support vector classifier and its applications

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

As a development of powerful SVMs, the recently proposed parametric-margin ν-support vector machine (par-ν-SVM) is good at dealing with heteroscedastic noise classification problems. In this paper, we propose a novel and fast proximal parametric-margin support vector classifier (PPSVC), based on the par-ν-SVM. In the PPSVC, we maximize a novel proximal parametric-margin by solving a small system of linear equations, while the par-ν-SVM maximizes the parametric-margin by solving a quadratic programming problem. Therefore, our PPSVC not only is useful with the case of heteroscedastic noise but also has a much faster learning speed compared with the par-ν-SVM. Experimental results on several artificial and public available datasets show the advantages of our PPSVC both on the generalization ability and learning speed. Furthermore, we investigate the performance of the proposed PPSVC on the text categorization problem. The experimental results on two benchmark text corpora show the practicability and effectiveness of the proposed PPSVC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20:273–297

    MATH  Google Scholar 

  2. Mangasarian OL (1994) Nonlinear programming. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  3. Bi JB, Vapnik VN (2003) Learning with rigorous support vector machines. In: Learning theory and kernel machines. Springer Berlin/Heidelberg 2777, pp 243–257

  4. Chang CC, Lin CJ (2001) Training ν-support vector classifiers: theory and algorithm. Neural Comput 13:2119–2147

    Article  MATH  Google Scholar 

  5. Tian Y, Shi Y, Liu X (2012) Recent advances on support vector machines research. Technol Econ Dev Econ 18(1):5–33

    Google Scholar 

  6. Qi Z, Tian Y, Shi Y (2013) Robust twin support vector machine for pattern classification. Pattern Recognit 46(1):305–316

    Google Scholar 

  7. Shao YH, Chen WJ, Deng NY, Wang Z (2012) Improved generalized eigenvalue proximal support vector machine. IEEE Signal Process Lett. doi:10.1109/LSP.2012.2216874

  8. Adankon M, Cheriet M (2010) Genetic algorithm-based training for semi-supervised SVM. Neural Comput Appl 19(8):1197–1206

    Article  Google Scholar 

  9. Lin T-C (2012) Decision-based filter based on SVM and evidence theory for image noise removal. Neural Comput Appl 21(4):695–703

    Article  Google Scholar 

  10. Guo P, Jiang Z, Lin S, Yao Y (2012) Combining LVQ with SVM technique for image semantic annotation. Neural Comput Appl 21(4):735–746

    Article  Google Scholar 

  11. Huang Y-L, Wang K-L, Chen D-R (2006) Diagnosis of breast tumors with ultrasonic texture analysis using support vector machines. Neural Comput Appl 15(2):164–169

    Article  Google Scholar 

  12. Taku K, Yuji M (2001) Chunking with support vector machines. Second meeting of the North American chapter of the association for computational linguistics on language technologies. MIT Press, Cambridge, MA, pp 1–8

    Google Scholar 

  13. Platt J (1999) Fast training of support vector machines using sequential minimal optimization. In: Schökopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods-support vector learning. MIT Press, Cambridge, MA, pp 185–208

    Google Scholar 

  14. Mangasarian OL, Musicant DR (1999) Successive overrelaxation for support vector machines. IEEE Trans Neural Netw 10:1032–1037

    Article  Google Scholar 

  15. Joachims T (1998) Making large-scale SVM learning practical. In: Advances in Kernel methods-support vector learning. MIT Press, Cambridge, MA, pp 169–184

  16. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/cjlin

  17. Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers. In: Proceedings of seventh international conference on knowledge and data discovery, San Francisco, pp 77–86

  18. Ghorai S, Mukherjee A, Dutta PK (2009) Nonparallel plane proximal classifier. Signal Process 89:510–522

    Article  MATH  Google Scholar 

  19. Hao PY, Tsai LB, Lin MS (2008) A new support vector classification algorithm with parametric-margin model. IEEE Int Jt Conf Neural Netw 420–425

  20. Hao PY (2010) New support vector algorithms with parametric insensitive/margin model. Neural Netw 23:60–73

    Article  Google Scholar 

  21. Peng XJ (2011) TPMSVM: A novel twin parametric-margin support vector machine for pattern recognition. Pattern Recogn 44(10–11):2678–2692

    Article  MATH  Google Scholar 

  22. Qi ZQ, Tian YJ, Shi Y (2012) Laplacian twin support vector machine for semi-supervised classification. Neural Netw 35:46–53

    Article  MATH  Google Scholar 

  23. Peng XJ, Xu D (2012) Geometric algorithms for parametric-margin ν-support vector machine. Neurocomputing doi:10.1016/j.neucom.2012.06.026

  24. Lee YJ, Mangasarian OL (2001) RSVM: reduced support vector machines. First SIAM international conference on data mining. Chicago, IL, USA, pp 5–7

  25. Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, Chichester, NY

    MATH  Google Scholar 

  26. Shao YH, Zhang CH, Wang XB, Deng NY (2011) Improvements on twin support vector machines. IEEE Trans Neural Netw 22(6):962–968

    Article  Google Scholar 

  27. Shao YH, Deng NY (2012) A novel margin based twin support vector machine with unity norm hyperplanes. Neural Comput Appl. doi:10.1007/s00521-012-0894-5

  28. Shao YH, Zhang CH, Yang ZM, Jing L, Deng NY (2012) An \(\varepsilon\)-twin support vector machine for regression. Neural Comput Appl. doi:10.1007/s00521-012-0924-3

  29. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  30. Shao YH, Deng NY (2013) A coordinate descent margin based-twin support vector machine for classification. Neural Netw 25:114–121

    Article  MATH  Google Scholar 

  31. Shao YH, Wang Z, Chen WJ, Deng NY (2013) A regularization for the projection twin support vector machine. Knowl Based Syst 37:203–210

    Google Scholar 

  32. MATLAB (2007) http://www.mathworks.com

  33. Schölkopf B, Alexander JS, Alexander JS (1998) Advances in Kernel methods-support vector learning. MIT Press, MA

    MATH  Google Scholar 

  34. Blake CL, Merz CJ (1998) UCI repository for machine learning databases. http://www.ics.uci.edu/mlearn/MLRepository.html

  35. Musicant DR (1998) NDC: normally distributed clustered datasets. http://www.cs.wisc.edu/dmi/svm/ndc/

  36. Zheng W, Qian Y, Lu H (2012) Text categorization based on regularization extreme learning machine. Neural Comput Appl 1–10

  37. Joachims Thorsten (1998) Text categorization with support vector machines: learning with many relevant features. Machine Learning: ECML-98, 1398. Springer, Berlin/Heidelberg, pp 137–142

  38. Reuters-21578 (2007) http://www.daviddlewis.com/resources/testcollections/reuters21578/

  39.  20-Newsgroups (2004) http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.htm

  40. Stopwords (2004) http://www.dcs.gla.ac.uk/idom/ir_resources/linuistic_utils/

  41. Porter MF (1980) An algorithm for suffix stripping. Program 14(3):130–137

    Article  Google Scholar 

  42. Weigend AS, Wiener ED, Pedersen JO (1999) Exploiting hierarchy in text categorization. Inf Retr 1(3):193–216

    Article  Google Scholar 

  43. Liao C, Alpha S, Dixon P (2007) UCI repository for machine learning databases. Technical Report, Oracle Corporation. http://www.oracle.com/technology/products/text/pdf/feature_preparation.pdf

  44. Arun Kumar M, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36:7535–7543

    Article  Google Scholar 

  45. Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) LIBLINEAR: a library for large linear classification. J Mach Learn Res 9:1871–1874

    MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No.60973155, No.11201426, No.10971223 and No.11071252), the Project 20121053 supported by Graduate Innovation Fund of Jilin University and the Zhejiang Provincial Natural Science Foundation of China (No.LQ12A01020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Shao, YH. & Wu, TR. Proximal parametric-margin support vector classifier and its applications. Neural Comput & Applic 24, 755–764 (2014). https://doi.org/10.1007/s00521-012-1278-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1278-6

Keywords

Navigation