Abstract
In this paper, the robust decentralized stabilization of continuous-time uncertain nonlinear systems with multi control stations is developed using a neural network based online optimal control approach. The novelty lies in that the well-known adaptive dynamic programming method is extended to deal with the nonlinear feedback control problem under uncertain and large-scale environment. Through introducing an appropriate bounded function and defining a modified cost function, it can be observed that the decentralized optimal controller of the nominal system can achieve robust decentralized stabilization of original uncertain system. Then, a critic neural network is constructed for solving the modified Hamilton–Jacobi–Bellman equation corresponding to the nominal system in an online fashion. The weights of the critic network are tuned based on the standard steepest descent algorithm with an additional term provided to guarantee the boundedness of system states. The stability analysis of the closed-loop system is carried out via the Lyapunov approach. At last, two simulation examples are given to verify the effectiveness of the present control approach.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abu-Khalaf M, Lewis FL (2005) Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach. Automatica 41(5):779–791
Adhyaru DM, Kar IN, Gopal M (2011) Bounded robust control of nonlinear systems using neural network-based HJB solution. Neural Comput Appl 20(1):91–103
Al-Tamimi A, Lewis FL, Abu-Khalaf M (2008) Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof. IEEE Trans Syst Man Cybern Part B Cybern 38(4):943–949
Bhasin S, Kamalapurkar R, Johnson M, Vamvoudakis KG, Lewis FL, Dixon WE (2013) A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems. Automatica 49(1):82–92
Dierks T, Jagannathan S (2012) Online optimal control of affine nonlinear discrete-time systems with unknown internal dynamics by using time-based policy update. IEEE Trans Neural Netw Learn Syst 23(7):1118–1129
Dierks T, Jagannathan S (2010) Optimal control of affine nonlinear continuous-time systems. In: Proceedings of the American control conference, Baltimore, MD, USA, June 2010, pp 1568–1573
Haddad WM, Chellaboina V, Fausz JL (1998) Robust nonlinear feedback control for uncertain linear systems with nonquadratic performance criteria. Syst Control Lett 33(5):327–338
Haddad WM, Chellaboina V, Fausz JL (2000) Optimal non-linear robust control for non-linear uncertain systems. Int J Control 73(4):329–342
Heydari A, Balakrishnan SN (2013) Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics. IEEE Trans Neural Netw Learn Syst 24(1):145–157
Jiang ZP, Jiang Y (2013) Robust adaptive dynamic programming for linear and nonlinear systems: an overview. Eur J Control 19(5):417–425
Lewis FL, Jagannathan S, Yesildirek A (1999) Neural network control of robot manipulators and nonlinear systems. Taylor & Francis, London
Lewis FL, Vrabie D, Vamvoudakis KG (2012) Reinforcement learning and feedback control: using natural decision methods to design optimal adaptive controllers. IEEE Control Syst Mag 32(6):76–105
Lin F (2000) An optimal control approach to robust control design. Int J Control 73(3):177–186
Liu D, Wang D, Zhao D, Wei Q, Jin N (2012) Neural-network-based optimal control for a class of unknown discrete-time nonlinear systems using globalized dual heuristic programming. IEEE Trans Autom Sci Eng 9(3):628–634
Liu D, Wang D, Yang X (2013a) An iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputs. Inf Sci 220:331–342
Liu D, Li H, Wang D (2013b) Neural-network-based zero-sum game for discrete-time nonlinear systems via iterative adaptive dynamic programming algorithm. Neurocomputing 110:92–100
Liu D, Li H, Wang D (2013c) Data-based self-learning optimal control: research progress and prospects. Acta Automatica Sinica 39(11):1858–1870
Liu D, Wang D, Li H (2014a) Decentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning optimal control approach. IEEE Trans Neural Netw Learn Syst 25(2):418–428
Liu D, Li H, Wang D (2014b) Online synchronous approximate optimal learning algorithm for multiplayer nonzero-sum games with unknown dynamics. IEEE Trans Syst Man Cybern Syst 44(8):1015–1027
Ni Z, He H, Wen J (2013) Adaptive learning in tracking control based on the dual critic network design. IEEE Trans Neural Netw Learn Syst 24(6):913–928
Ni Z, He H (2013) Heuristic dynamic programming with internal goal representation. Soft Comput 17(11):2101–2108
Nodland D, Zargarzadeh H, Jagannathan S (2013) Neural network-based optimal adaptive output feedback control of a helicopter UAV. IEEE Trans Neural Netw Learn Syst 24(7):1061–1073
Vamvoudakis KG, Lewis FL (2010) Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica 46(5):878–888
Wang D, Liu D, Wei Q (2012a) Finite-horizon neuro-optimal tracking control for a class of discrete-time nonlinear systems using adaptive dynamic programming approach. Neurocomputing 78(1):14–22
Wang D, Liu D, Wei Q, Zhao D, Jin N (2012b) Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic programming. Automatica 48(8):1825–1832
Wang D, Liu D, Li H (2014) Policy iteration algorithm for online design of robust control for a class of continuous-time nonlinear systems. IEEE Trans Autom Sci Eng 11(2):627–632
Werbos PJ (1992) Approximate dynamic programming for real-time control and neural modeling. In: White DA, Sofge DA (eds) Proceedings of handbook of intelligent control: neural, fuzzy, and adaptive approaches, ch 13, Van Nostrand Reinhold, New York
Wu HN, Luo B (2012) Neural network based online simultaneous policy update algorithm for solving the HJI equation in nonlinear \(H_{\infty }\) control. IEEE Trans Neural Netw Learn Syst 23(12):1884–1895
Yang X, Liu D, Wang D (2014) Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints. Int J Control 87(3):553–566
Zhang H, Luo Y, Liu D (2009) Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints. IEEE Trans Neural Netw 20(9):1490–1503
Zhang H, Cui L, Luo Y (2013) Near-optimal control for nonzero-sum differential games of continuous-time nonlinear systems using single-network ADP. IEEE Trans Cybern 43(1):206–216
Zhang D, Liu D, Wang D (2014) Approximate optimal solution of the DTHJB equation for a class of nonlinear affine systems with unknown dead-zone constraints. Soft Comput 18(2):349–357
Zhao Q, Xu H, Dierks T, Jagannathan S (2013) Finite-horizon neural network-based optimal control design for affine nonlinear continuous-time systems. In: Proceedings of the international joint conference on neural networks, Dallas, TX, USA, Aug 2013, pp 1–6
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by V. Loia.
This work was supported in part by the National Natural Science Foundation of China under Grants 61034002, 61233001, 61273140, 61304086, and 61374105, in part by Beijing Natural Science Foundation under Grant 4132078, and in part by the Early Career Development Award of SKLMCCS.
Rights and permissions
About this article
Cite this article
Wang, D., Liu, D., Li, H. et al. A neural-network-based online optimal control approach for nonlinear robust decentralized stabilization. Soft Comput 20, 707–716 (2016). https://doi.org/10.1007/s00500-014-1534-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-014-1534-z