Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Norepinephrinergic afferents and cytology of the macaque monkey midline, mediodorsal, and intralaminar thalamic nuclei

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The midline and intralaminar thalamic nuclei (MITN), locus coeruleus (LC) and cingulate cortex contain nociceptive neurons. The MITN that project to cingulate cortex have a prominent innervation by norepinephrinergic axons primarily originating from the LC. The hypothesis explored in this study is that MITN neurons that project to cingulate cortex receive a disproportionately high LC input that may modulate nociceptive afferent flow into the forebrain. Ten cynomolgus monkeys were evaluated for dopamine-β hydroxylase (DBH) immunohistochemistry, and nuclei with moderate or high DBH activity were analyzed for intermediate neurofilament proteins, calbindin (CB), and calretinin (CR). Sections of all but DBH were thionin counterstained to assure precise localization in the mediodorsal and MITN, and cytoarchitecture was analyzed with neuron-specific nuclear binding protein. Moderate–high levels of DBH-immunoreactive (ir) axons were generally associated with high densities of CB-ir and CR-ir neurons and low levels of neurofilament proteins. The paraventricular, superior centrolateral, limitans and central nuclei had relatively high and evenly distributed DBH, the magnocellular mediodorsal and paracentral nuclei had moderate DBH-ir, and other nuclei had an even and low level of activity. Some nuclei also have heterogeneities in DBH-ir that raised questions of functional segregation. The anterior multiformis part of the mediodorsal nucleus but not middle and caudal levels had high DBH activity. The posterior parafascicular nucleus (Pf) was heterogeneous with the lateral part having little DBH activity, while its medial division had most DBH-ir axons and its multiformis part had only a small number. These findings suggest that the LC may regulate nociceptive processing in the thalamus. The well established role of cingulate cortex in premotor functions and the projections of Pf and other MITN to the limbic striatum suggests a specific role in mediating motor outflow for the LC-innervated nuclei of the MITN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACC:

Anterior cingulate cortex

AD:

Anterodorsal nucleus

AV:

Anteroventral nucleus

C:

Central nucleus of the thalamus

Cif:

Inferior part

Cl:

Lateral part

Cim:

Inferior medial part

Cs:

Superior part

Csl:

Superior lateral part

CB:

Calbindin

cgs:

Cingulate sulcus

CnMd (CM):

Centre medianum

CR:

Calretinin

DBH:

Dopamine-β hydroxylase

dPCC:

Dorsal posterior cingulate cortex

Hb:

Habenula

hit:

Habenulointerpeduncular tract

ir:

Immunoreactive

LD:

Laterodorsal nucleus

Li:

Limitans

MCC:

Midcingulate cortex

MD:

Mediodorsal nucleus and its divisions

MDdc:

Densocellular

MDmc:

Magnocellular

MDmf:

Multiformis

MDmfa:

Anterior multiformis part of MDmf

MDpc:

Parvocellularis

mtt:

Mammilothalamic tract

NeuN:

Neuron-specific nuclear binding protein

PCC:

Posterior cingulate cortex

Pcn:

Paracentral nucleus of the thalamus

Pf:

Parafascicular nucleus

Pfl:

Lateral part

Pfm:

Medial part

Pfmf:

Multiformis part

PGi:

Paragigantocellular nucleus of the reticular formation

Prt:

Pretectal nucleus

Pt:

Parataenial nucleus

Pulm:

Medial pulvinar nucleus

Pv:

Paraventricular nucleus

Re:

Reuniens

sc:

Superior colliculus

sm:

Stria medullaris

SMI32:

Antibody for nonphosphorylated intermediate neurofilaments

sPf:

Subparafascicular nucleus

VM:

Ventral medial (VLm of Olszewski)

References

  • Abols IA, Basbaum AI (1981) Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain–medullary interactions in the modulation of pain. J Comp Neurol 201:285–297

    Article  PubMed  CAS  Google Scholar 

  • Abercrombie ED, Jacobs BL (1987) Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli. J Neurosci 7:2837–2843

    PubMed  CAS  Google Scholar 

  • Ammons WS, Girardot M-N, Foreman RD (1985) T2–T5 spinothalamic neurons projecting to medial thalamus with viscerosomatic input. J Neurophysiol 54:73–89

    PubMed  CAS  Google Scholar 

  • Apkarian AV, Hodge CJ (1989) Primate spinothalamic pathways: III. Thalamic terminations of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 288:493–511

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Ennis M, Pieribone VA, Nickell WT, Shipley MT (1993) The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234:734–737

    Article  Google Scholar 

  • Aston-Jones G, Rajkowski J, Kubiak P, Valentino RJ (1996) Role of the locus coeruleus in emotional activation. Prog Brain Res 107:379–402

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Rajkowski J, Kubiak P (1997) Conditioned responses of monkey locus coeruleus neurons anticipate acquisition of discriminative behavior in a vigilance task. Neuroscience 80:697–715

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Rajkowski J, Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46:1309–1320

    Article  PubMed  CAS  Google Scholar 

  • Beckstead RM, Morse JR, Norgren R (1980) The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol 190:259–282

    Article  PubMed  CAS  Google Scholar 

  • Bernard JF, Villenueva L, Carroue J, Le Bars D (1990) Efferent projections from the subnucleus reticularis dorsalis (SRD): a Phaseolus vulgaris leucoagglutinin study in rat. Neurosci Lett 116:257–262

    Article  PubMed  CAS  Google Scholar 

  • Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42:33–84

    Article  PubMed  Google Scholar 

  • Bester H, Bourgeais L, Villanueva L, Besson J-M, Bernard J-F (1999) Differential projections to the intralaminar and gustatory thalamus from the parabrachial area: a PHA-L study in the rat. J Comp Neurol 405:421–449

    Article  PubMed  CAS  Google Scholar 

  • Byrum CE, Guyenet PG (1987) Afferent and efferent connections of the A5 noradrenergic cell group in the rat. J Comp Neurol 261:529–542

    Article  PubMed  CAS  Google Scholar 

  • Casey KL (1966) Unit analysis of nociceptive mechanisms in the thalamus of the awake squirrel monkey. J Neurophysiol 29:727–750

    PubMed  CAS  Google Scholar 

  • Chang C, Aston-Jones G (1993) Response of locus coeruleus neurons to footshock stimulation is mediated by neurons in the rostral ventral medulla. Neuroscience 53:705–715

    Article  Google Scholar 

  • Chiba T, Kayahara T, Nakano K (2001) Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 888:83–101

    Article  PubMed  CAS  Google Scholar 

  • Comans PE, Snow PJ (1981) Ascending projections to nucleus parafascicularis of the cat. Brain Res 230:337–341

    Article  PubMed  CAS  Google Scholar 

  • Devilbiss DM, Waterhouse BD (2004) The effects of tonic locus coeruleus output on sensory-evoked responses of ventral posterior medial thalamus and barrel field cortical neurons in the awake rat. J Neurosci 24:10773–10785

    Article  PubMed  CAS  Google Scholar 

  • Dong WK, Ryu H, Wagman IH (1978) Nociceptive responses of neurons in medial thalamus and their relationship to spinothalamic pathways. J Neurophysiol 41:1592–1613

    PubMed  CAS  Google Scholar 

  • Ebert U (1996) Noradrenalin enhances the activity of cochlear nucleus neurons in the rat. Eur J Neurosci 8:1306–1314

    Article  PubMed  CAS  Google Scholar 

  • Ego-Stengel V, Bringuir V, Shulz DE (2002) Noradrenergic modulation of functional selectivity in the cat visual cortex: an in vivo extracellular and intracellular study. Neuroscience 111:275–289

    Article  PubMed  CAS  Google Scholar 

  • Ennis M, Aston-Jones G (1988) Activation of locus coeruleus from nucleus paragigantocellularis: a new excitatory amino acid pathway in brain. J Neurosci 8:3644–3657

    PubMed  CAS  Google Scholar 

  • Ennis M, Aston-Jones G, Shiekhatter R (1992) Activation of locus coeruleus neurons by nucleus paragigantocellularis or noxious sensory stimulation is mediated by intracoerulear excitatory amino acid neurotransmission. Brain Res 598:185–195

    Article  PubMed  CAS  Google Scholar 

  • Foote SL (1997) The primate locus coeruleus: the chemical neuroanatomy of the nucleus, its efferent projections, and its target receptors. In: Bloom FE, Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy: the primate nervous system, part I, vol 13. Elsevier, Amsterdam, pp 187–215

    Chapter  Google Scholar 

  • Giménez-Amaya JM, McFarland NR, De Las Heras S, Haber SN (1995) Organization of thalamic projections to the ventral striatum in the primate. J Comp Neurol 354:127–149

    Article  PubMed  Google Scholar 

  • Ginsberg SD, Hof PR, Young WG, Morrison JH (1994) Noradrenergic innervation of vasopression- and oxytocin-containing neurons in the hypothalamic paraventricular nucleus of the macaque monkey: quantitative analysis using double-label immunohistochemistry and confocal laser microscopy. J Comp Neurol 341:476–491

    Article  PubMed  CAS  Google Scholar 

  • Haber SN, Gdowski MJ (2004) The basal ganglia. In: Pxinos G, Mai JK (eds) The human nervous system. Elsevier, Sydney, pp 676–738

    Chapter  Google Scholar 

  • Hatanaka N, Tokuno H, Hamada I, Inase M, Ito Y, Imanishi M, Hasegawa N, Akazawa T, Nambu A, Takada M (2003) Thalamocortical and intracortical connections of monkey cingulate motor areas. J Comp Neurol 462:121–138

    Article  PubMed  Google Scholar 

  • Henke PG (1983) Mucosal damage following electrical stimulation of the anterior cingulate cortex and pretreatment with atropine and cimetidine. Pharmacol Biochem Behav 19:483–486

    Article  PubMed  CAS  Google Scholar 

  • Hirata H, Aston-Jones G (1994) A novel long-latency response of locus coeruleus neurons to noxious stimuli: mediation by peripheral C-fibers. J Neurophysiol 71:1752–1761

    PubMed  CAS  Google Scholar 

  • Jones BE, Yang T-Z (1985) The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J Comp Neurol 242:56–92

    Article  PubMed  CAS  Google Scholar 

  • Kunishio K, Haber SN (1994) Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J Comp Neurol 350:337–356

    Article  PubMed  CAS  Google Scholar 

  • Menendez L, Bester H, Besson JM, Bernard JF (1996) Parabrachial area: electrophysiological evidence for an involvement in cold nociception. J Neurophysiol 75:2099–2116

    PubMed  CAS  Google Scholar 

  • Menetrey D, Roudier F, Besson JM (1983) Spinal neurons reaching the lateral reticular nucleus as studied in the rat by retrograde transport of horseradish peroxidase. J Comp Neurol 220:439–452

    Article  PubMed  CAS  Google Scholar 

  • Morrison JH, Foote SL (1986) Noradrenergic and serotoninergic innervaqtion of cortical, thalamic, and tectal visual structures in Old and New World monkeys. J Comp Neurol 243:117–138

    Article  PubMed  CAS  Google Scholar 

  • Minciacchi D, Bentivoglio M, Molinari M, Kultas-Ilinsky K, Ilinsky IA, Macchi G (1986) Multiple cortical targets of one thalamic nucleus: the projections of the ventral medial nucleus in the cat studied with retrograde tracers. J Comp Neurol 252:106–129

    Article  PubMed  CAS  Google Scholar 

  • Olszewski J (1952) The thalamus of the Macaca mulatta. S. Karger, Basel

    Google Scholar 

  • Pandya DN, Van Hoesen GW, Mesulam M-M (1981) Efferent connections of the cingulate gyrus in the rhesus monkey. Exp Brain Res 42:319–330

    Article  PubMed  CAS  Google Scholar 

  • Pritchard TC, Hamilton RB, Norgren R (2000) Projections of the parabrachial nucleus in the old world monkey. Exp Neurol 165:101–117

    Article  PubMed  CAS  Google Scholar 

  • Room P, Russchen FT, Groenewegen HJ, Lohman AHM (1985) Efferent connections of the prelimbic (area 32) and the infralimbic (area 25) cortices: an anterograde tracing study in the cat. J Comp Neurol 242:40–55

    Article  PubMed  CAS  Google Scholar 

  • Rosene DL, Lister JP, Schwagerl AL, Tonkiss J, McCormick CM, Galler JR (2004) Prenatal malnutrition in rats alters the c-Fos response of neurons in the anterior cingulate and medial prefrontal region to behavioral stress. Nutr Neurosci 7:281–289

    Article  PubMed  CAS  Google Scholar 

  • Royce GJ, Gracco BC, Beckstead RM (1989) Thalamocortical connections of the rostral intralaminar nuclei: an autoradiographic analysis in the cat. J Comp Neurol 288:555–582

    Article  PubMed  CAS  Google Scholar 

  • Royce GJ, Bromley S, Gracco C (1991) Subcortical projections to the centromedian and parafascicular thalamic nuclei in the cat. J Comp Neurol 306:129–155

    Article  PubMed  CAS  Google Scholar 

  • Sadikot AF, Parent A, Francois C (1992) Efferent connections of the centromedian and parafascicularthalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315:137–159

    Article  PubMed  CAS  Google Scholar 

  • Sakata S, Shima F, Kato M, Fukui M (1988) Effects of thalamic parafascicular stimulation on the periaqueductal gray and adjacent reticular formation neurons. A possible contribution to pain control mechanisms. Brain Res 451:85–96

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko PE, Li H-Y, Ericsson (2000) Circuits and mechanisms governing hypothalamic responses to stress: a tale of two paradigms. Prog Brain Res 122:61–78

    Article  PubMed  CAS  Google Scholar 

  • Sikes RW, Vogt BA (1992) Nociceptive neurons in area 24 of rabbit cingulate cortex. J Neurophysiol 68:1720–1732

    PubMed  CAS  Google Scholar 

  • Villanueva L, Bouhassira D, Bing Z, Le Bars D (1988) Convergence of heterotopic nociceptive information onto subnucleus reticularis dorsalis neurons in the rat medulla. J Neurophysiol 60:980–1009

    PubMed  CAS  Google Scholar 

  • Villanueva L, Debois C, Le Bars D, Bernard J-F (1998) Organization of diencephalic projections from the medullary subnucleus reticularis dorsalis: a retrograde and anterograde tracer study in the rat. J Comp Neurol 390:133–160

    Article  PubMed  CAS  Google Scholar 

  • Vogt BA (2005) Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 6:533–545

    Article  PubMed  CAS  Google Scholar 

  • Vogt BA, Rosene DL, Pandya DN (1979) Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science 204:205–207

    Article  PubMed  CAS  Google Scholar 

  • Vogt BA, Pandya DN, Rosene DL (1987) Cingulate cortex of rhesus monkey I. Cytoarchitecture and thalamic afferents. J Comp Neurol 262:256–270

    Article  PubMed  CAS  Google Scholar 

  • Vogt BA, Aston-Jones G, Vogt LJ (2008) Shared norepinephrinergic and cingulate circuits, nociceptive and allostatic interactions and cingulate contributions to functional pain and stress disorders. In: Vogt BA (ed) Cingulate neurobiology and disease, Chap. 22 (in press)

  • Westlund KN, Craig AD (1996) Association of spinal lamina I projections with brainstem catecholamine neurons in the monkey. Exp Brain Res 110:151–162

    Article  PubMed  CAS  Google Scholar 

  • Willis WD Jr, Kenshalo DR, Leonard RB (1979) The cells of origin of the primate spinothalamic tract. J Comp Neurol 188:543–574

    Article  PubMed  CAS  Google Scholar 

  • Woulfe JM, Flumerfelt BA, Hrycyshyn AW (1990) Efferent connections of the A1 noradrenergic cell group: a DBH immunohistochemical and PHA-L anterograde tracing study. Exp Neurol 109:308–322

    Article  PubMed  CAS  Google Scholar 

  • Yasui Y, Itoh K, Takada M, Mitani A, Kaneko T, Mizuno N (1985) Direct cortical projections to the parabrachial nucleus in the cat. J Comp Neurol 234:77–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by the NIH-NINDS grant RO1-NS44222 (BAV) and the James S. McDonnel Foundation (220020078; PRH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent A. Vogt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, B.A., Hof, P.R., Friedman, D.P. et al. Norepinephrinergic afferents and cytology of the macaque monkey midline, mediodorsal, and intralaminar thalamic nuclei. Brain Struct Funct 212, 465–479 (2008). https://doi.org/10.1007/s00429-008-0178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-008-0178-0

Keywords

Navigation