Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Promising plant-derived secondary metabolites for treatment of acne vulgaris: a mechanistic review

  • Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Acne vulgaris is the most common skin condition associated with inflammation of pilosebaceous unit. Since conventional therapies have not demonstrated desirable effectiveness and possess remarkable side effects, there is a growing interest in the use of herbal medicines for the management of acne vulgaris. In this study, plant-derived molecules investigated in acne vulgaris have been reviewed and their possible underlying mechanisms of action were discussed. For this purpose, different electronic databases including PubMed, Scopus, Cochrane library and Google Scholar were searched to obtain any in vitro, in vivo, or human studies evaluating the phytochemicals in the management of acne vulgaris. Data were collected from 1980 to 2018 (up to October). Most of the phytochemicals investigated in acne were from the category of polyphenols including resveratrol, myricitrin, schisandrin, terchebulin, alpha-mangotin, curcumin, ellagic acid and epigallocatechin 3-gallate. Moreover, alkaloids and terpenoids such as berberine, ursolic acid, lupeol were evaluated in acne vulgaris with less abundance. Various molecular mechanisms were involved in effects of phytochemicals including antioxidant (through down-regulation of H2O2, MDA, ROS and upregulation of SOD), anti-inflammatory (through reduction of proinflammatory cytokines, i.e., IL-1ß, IL-6, IL-8, TGF-β, TNF-α, NF-κB), immunomodulatory, antibacterial (against Propionibacterium acnes and Propionibacterium granulosum), antiandrogenic, reducing sebum production, and lipogenesis inhibitory activities. Therefore, phytochemicals seem to be a precious source for identifying new medicines for treatment of acne vulgaris; however, since most of studies are preclinical, further clinical studies are needed to achieve more conclusive and reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Song YH, Cai H, Gu N et al (2011) Icariin attenuates cardiac remodelling through down-regulating myocardial apoptosis and matrix metalloproteinase activity in rats with congestive heart failure. J Pharm Pharmacol 63(4):541–549

    CAS  PubMed  Google Scholar 

  2. Liu CH, Huang HY (2013) In vitro anti-propionibacterium activity by curcumin containing vesicle system. Chem Pharm Bull (Tokyo) 61(4):419–425

    CAS  Google Scholar 

  3. Zouboulis C, Eady A, Philpott M et al (2005) What is the pathogenesis of acne? Exp Dermatol 14(2):143

    CAS  PubMed  Google Scholar 

  4. Wu T-Q, Mei S-Q, Zhang J-X et al (2007) Prevalence and risk factors of facial acne vulgaris among Chinese adolescents. Int J Adolesc Med Health 19(4):407–412

    PubMed  Google Scholar 

  5. Perkins AC, Maglione J, Hillebrand GG, Miyamoto K, Kimball AB (2012) Acne vulgaris in women: prevalence across the life span. J Womens Health 21(2):223–230

    Google Scholar 

  6. Zaenglein AL, Pathy AL, Schlosser BJ et al (2016) Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol 74(5):945–73.e33

    Google Scholar 

  7. Bhate K, Williams H (2013) Epidemiology of acne vulgaris. Br J Dermatol 168(3):474–485

    CAS  PubMed  Google Scholar 

  8. Rapp SR, Feldman SR, Graham G et al (2006) The acne quality of life index (Acne-QOLI). Am J Clin Dermatol 7(3):185–192

    PubMed  Google Scholar 

  9. Kapoor S, Saraf S (2011) Topical herbal therapies an alternative and complementary choice to combat acne. Res J Med Plant 5(6):650–659

    Google Scholar 

  10. Tahir I, Khan MR, Shah NA, Aftab M (2016) Evaluation of phytochemicals, antioxidant activity and amelioration of pulmonary fibrosis with Phyllanthus emblica leaves. BMC Complement Altern Med 16(1):406

    PubMed  PubMed Central  Google Scholar 

  11. Williams HC, Dellavalle RP, Garner S (2012) Acne vulgaris. Lancet 379(9813):361–372

    PubMed  Google Scholar 

  12. Hosein Farzaei M, Bahramsoltani R, Rahimi (2016) Phytochemicals as adjunctive with conventional anticancer therapies. Curr Pharm Des 22(27):4201–4218

    Google Scholar 

  13. Bahramsoltani R, Farzaei MH, Rahimi (2014) Medicinal plants and their natural components as future drugs for the treatment of burn wounds: an integrative review. Arch Dermatol Res 306(7):601–617

    CAS  PubMed  Google Scholar 

  14. Azimi H, Fallah-Tafti M, Khakshur AA, Abdollahi M (2012) A review of phytotherapy of acne vulgaris: perspective of new pharmacological treatments. Fitoterapia 83(8):1306–1317

    CAS  PubMed  Google Scholar 

  15. Nishijima S, Kurokawa I, Katoh N, Watanabe K (2000) The bacteriology of acne vulgaris and antimicrobial susceptibility of Propionibacterium acnes and Staphylococcus epidermidis isolated from acne lesions. J Dermatol 27(5):318–323

    CAS  PubMed  Google Scholar 

  16. Gollnick H (2003) Current concepts of the pathogenesis of acne. Drugs 63(15):1579–1596

    CAS  PubMed  Google Scholar 

  17. Ganceviciene R, Fimmel S, Glass E, Zouboulis CC (2006) Psoriasin and follicular hyperkeratinization in acne comedones. Dermatology 213(3):270–272

    PubMed  Google Scholar 

  18. Degitz K, Placzek M, Borelli C, Plewig G (2007) Pathophysiology of acne. J Dtsch Dermatol Ges 5(4):316–323

    PubMed  Google Scholar 

  19. Vora J, Srivastava A, Modi H (2017) Antibacterial and antioxidant strategies for acne treatment through plant extracts. Inf Med Unlock 13:128–132

    Google Scholar 

  20. Kim J, Ochoa M-T, Krutzik SR et al (2002) Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 169(3):1535–1541

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeremy AH, Holland DB, Roberts SG, Thomson KF, Cunliffe WJ (2003) Inflammatory events are involved in acne lesion initiation. J Invest Dermatol 121(1):20–27

    CAS  PubMed  Google Scholar 

  22. Tanghetti EA (2013) The role of inflammation in the pathology of acne. J Clin Aesthet Dermatol 6(9):27

    PubMed  PubMed Central  Google Scholar 

  23. Downie MM, Kealey T (1998) Lipogenesis in the human sebaceous gland: glycogen and glycerophosphate are substrates for the synthesis of sebum lipids. J Invest Dermatol 111(2):199–205

    CAS  PubMed  Google Scholar 

  24. McNairn AJ, Doucet Y, Demaude J et al (2013) TGFβ signaling regulates lipogenesis in human sebaceous glands cells. BMC Dermatol 13(1):2

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lyon CC (2001) Acne: diagnosis and management. SAGE Publications Sage UK, London

    Google Scholar 

  26. Arican O, Kurutas EB, Sasmaz S (2005) Oxidative stress in patients with acne vulgaris. Mediators Inflamm 2005(6):380–384

    PubMed  PubMed Central  Google Scholar 

  27. Jung H-A, Su B-N, Keller WJ, Mehta RG, Kinghorn AD (2006) Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J Agric Food Chem 54(6):2077–2082

    CAS  PubMed  Google Scholar 

  28. Asasutjarit R, Larpmahawong P, Fuongfuchat A, Sareedenchai V, Veeranondha S (2014) Physicochemical properties and anti-Propionibacterium acnes activity of film-forming solutions containing alpha-mangostin-rich extract. AAPS Pharm Sci Tech 15(2):306–316

    CAS  Google Scholar 

  29. Zou W, Yin P, Shi Y et al (2019) A novel biological role of α-Mangostin via TAK1-NF-κB pathway against inflammatory. Inflammation 42(1):103–112

    CAS  PubMed  Google Scholar 

  30. Franceschelli S, Pesce M, Ferrone A et al (2016) A novel biological role of alpha-mangostin in modulating inflammatory response through the activation of SIRT-1 signaling pathway. J Cell Physiol 231(11):2439–2451

    CAS  PubMed  Google Scholar 

  31. Fang Y, Su T, Qiu X et al (2016) Protective effect of alpha-mangostin against oxidative stress induced-retinal cell death. Sci Rep 6:1018–1038

    Google Scholar 

  32. Marquez-Valadez B, Maldonado PD, Galvan-Arzate S et al (2012) Alpha-mangostin induces changes in glutathione levels associated with glutathione peroxidase activity in rat brain synaptosomes. Nutr Neurosci 15(5):13–19

    CAS  PubMed  Google Scholar 

  33. Kou X, Chen N (2012) Pharmacological potential of ampelopsin in Rattan tea. Food Sci Hum Wellness 1(1):14–18

    Google Scholar 

  34. Qi S, Xin Y, Guo Y et al (2012) Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-κB signaling pathways. Int Immunopharmacol 12(1):278–287

    CAS  PubMed  Google Scholar 

  35. Weng L, Zhang H, Li X et al (2017) Ampelopsin attenuates lipopolysaccharide-induced inflammatory response through the inhibition of the NF-κB and JAK2/STAT3 signaling pathways in microglia. Int Immunopharmacol 44:1–8

    CAS  PubMed  Google Scholar 

  36. Hou X, Zhang J, Ahmad H et al (2014) Evaluation of antioxidant activities of ampelopsin and its protective effect in lipopolysaccharide-induced oxidative stress piglets. PLoS ONE 9(9):e108314

    PubMed  PubMed Central  Google Scholar 

  37. Farzaei MH, Rahimi R, Abdollahi M (2015) The role of dietary polyphenols in the management of inflammatory bowel disease. Curr Pharm Biotechnol 16(3):196–210

    CAS  PubMed  Google Scholar 

  38. Lee KE, Youm JK, Lee WJ, Kang S, Kim YJ (2017) Polyphenol-rich apple extract inhibits dexamethasone-induced sebaceous lipids production by regulating SREBP1 expression. Exp Dermatol 26(10):958–960

    CAS  PubMed  Google Scholar 

  39. Lu Y, Foo LY (2000) Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem 68(1):81–85

    CAS  Google Scholar 

  40. Skyberg JA, Robison A, Golden S et al (2011) Apple polyphenols require T cells to ameliorate dextran sulfate sodium-induced colitis and dampen proinflammatory cytokine expression. J Leukoc Biol 90(6):1043–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu ZR, Li JY, Dong XW et al (2015) Apple polyphenols decrease atherosclerosis and hepatic steatosis in ApoE−/− mice through the ROS/MAPK/NF-kappaB pathway. Nutrients 7(8):7085–7105

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Etti IC, Abdullah R, Kadir A et al (2017) The molecular mechanism of the anticancer effect of Artonin E in MDA-MB 231 triple negative breast cancer cells. PLoS ONE 12(8):e0182357

    PubMed  PubMed Central  Google Scholar 

  43. Nayak M, Nagarajan A, Majeed M, Nagabhushanam K, Choudhury AK (2017) In vitro anti-acne activity of phytoactives from the stem bark of Artocarpus hirsutus Lam. and characterisation of pyranocycloartobiloxanthone A as a mixture of two anomers. Nat Prod Res 2017:1–5

  44. Reddy GR, Ueda N, Hada T et al (1991) A prenylflavone, artonin E, as arachidonate 5-lipoxygenase inhibitor. Biochem Pharmacol 41(1):115–118

    CAS  PubMed  Google Scholar 

  45. Li CG, Yan L, Jing YY et al (2017) Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling. Oncotarget 8(1):95–109

    PubMed  Google Scholar 

  46. Spatuzza C, Postiglione L, Covelli B et al (2014) Effects of berberine and red yeast on proinflammatory cytokines IL-6 and TNF-alpha in peripheral blood mononuclear cells (PBMCs) of human subjects. Front pharmacol 5:230

    PubMed  PubMed Central  Google Scholar 

  47. Zhang H, Shan Y, Wu Y et al (2017) Berberine suppresses LPS-induced inflammation through modulating Sirt1/NF-kappaB signaling pathway in RAW264.7 cells. Int Immunopharmacol 52:93–100

  48. Sun Y, Yuan X, Zhang F et al (2017) Berberine ameliorates fatty acid-induced oxidative stress in human hepatoma cells. Sci Rep 7(1):11340

    PubMed  PubMed Central  Google Scholar 

  49. Sadeghnia HR, Kolangikhah M, Asadpour E, Forouzanfar F, Hosseinzadeh H (2017) Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells. Iran J Basic Med Sci 20(5):594–603

    PubMed  PubMed Central  Google Scholar 

  50. Tian Y, Zhao L, Wang Y et al (2016) Berberine inhibits androgen synthesis by interaction with aldo-keto reductase 1C3 in 22Rv1 prostate cancer cells. Asian J Androl 18(4):607–612

    CAS  PubMed  Google Scholar 

  51. Seki T, Morohashi M (1993) Effect of some alkaloids, flavonoids and triterpenoids, contents of Japanese–Chinese traditional herbal medicines, on the lipogenesis of sebaceous glands. Skin Pharmacol Physiol 6(1):56–60

    CAS  Google Scholar 

  52. Farzaei MH, Zobeiri M, Parvizi F et al (2018) Curcumin in liver diseases: a systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients 10:7

    PubMed Central  Google Scholar 

  53. Haghi A, Azimi H, Rahimi R (2017) A comprehensive review on pharmacotherapeutics of three phytochemicals, curcumin, quercetin, and Allicin, in the treatment of gastric cancer. J Gastrointest Cancer 48(4):314–320

    CAS  PubMed  Google Scholar 

  54. Liu CH, Huang HY (2012) Antimicrobial activity of curcumin-loaded myristic acid microemulsions against Staphylococcus epidermidis. Chem Pharm Bull 60(9):1118–1124

    CAS  PubMed  Google Scholar 

  55. Dai J, Gu L, Su Y et al (2018) Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-kappaB pathways. Int Immunopharmacol 54:177–187

    CAS  PubMed  Google Scholar 

  56. Zhang Z, Li K (2018) Curcumin attenuates high glucose-induced inflammatory injury through the reactive oxygen species-phosphoinositide 3-kinase/protein kinase B-nuclear factor-kappaB signaling pathway in rat thoracic aorta endothelial cells. J Diabetes Investig 9(4):731–740

    CAS  PubMed  Google Scholar 

  57. Yu S, Wang M, Guo X, Qin R (2018) Curcumin attenuates inflammation in a severe acute pancreatitis animal model by regulating TRAF1/ASK1 signaling. Med Sci Monit 24:2280–2286

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sivasankar C, Maruthupandiyan S, Balamurugan K et al (2016) A combination of ellagic acid and tetracycline inhibits biofilm formation and the associated virulence of Propionibacterium acnes in vitro and in vivo. Biofouling 32(4):397–410

    CAS  PubMed  Google Scholar 

  59. Umesalma S, Sudhandiran G (2010) Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-κB, iNOS, COX-2, TNF-α, and IL-6 in 1, 2-dimethylhydrazine-induced rat colon carcinogenesis. Basic Clin Pharmacol Toxicol 107(2):650–655

    CAS  PubMed  Google Scholar 

  60. Rios JL, Giner RM, Marin M, Recio MC (2018) A pharmacological update of ellagic acid. Planta Med

  61. Rozentsvit A, Vinokur K, Samuel S, Li Y, Gerdes AM, Carrillo-Sepulveda MA (2017) Ellagic acid reduces high glucose-induced vascular oxidative stress through ERK1/2/NOX4 signaling pathway. Cell Physiol Biochem 44(3):1174–1187

    CAS  PubMed  Google Scholar 

  62. Ural MS, Yonar ME, Mise Yonar S (2015) Protective effect of ellagic acid on oxidative stress and antioxidant status in Cyprinus carpio during malathion exposure. Cell Mol Biol (Noisy-le-grand) 61(5):58–63

  63. Uzar E, Alp H, Cevik MU et al (2012) Ellagic acid attenuates oxidative stress on brain and sciatic nerve and improves histopathology of brain in streptozotocin-induced diabetic rats. Neurol Sci 33(3):567–574

    PubMed  Google Scholar 

  64. Farzaei MH, Shahpiri Z, Bahramsoltani R et al (2017) Efficacy and tolerability of phytomedicines in multiple sclerosis patients: a review. CNS Drugs 31(10):867–889

    CAS  PubMed  Google Scholar 

  65. Yoon JY, Kwon HH, Min SU, Thiboutot DM, Suh DH (2013) Epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting P. acnes. J Invest Dermatol 133(2):429–440

    CAS  PubMed  Google Scholar 

  66. Koseki J, Matsumoto T, Matsubara Y et al (2015) Inhibition of Rat 5alpha-reductase activity and testosterone-induced sebum synthesis in hamster sebocytes by an extract of quercus acutissima cortex. Evid Based Complement Alternat Med. 2015:853846

  67. Yang N, Zhang H, Cai X, Shang Y (2018) Epigallocatechin-3-gallate inhibits inflammation and epithelialmesenchymal transition through the PI3K/AKT pathway via upregulation of PTEN in asthma. Int J Mol Med 41(2):818–828

    CAS  PubMed  Google Scholar 

  68. Shi J, Deng H, Pan H, Xu Y, Zhang M (2017) Epigallocatechin-3-gallate attenuates microcystin-LR induced oxidative stress and inflammation in human umbilical vein endothelial cells. Chemosphere 168:25–31

    CAS  PubMed  Google Scholar 

  69. Guo M, An F, Wei X, Hong M, Lu Y (2017) Comparative effects of schisandrin A, B, and C on acne-related inflammation. Inflammation 40(6):2163–2172

    CAS  PubMed  Google Scholar 

  70. Batubara I, Kuspradini H, Muddathir AM, Mitsunaga T (2014) Intsia palembanica wood extracts and its isolated compounds as Propionibacterium acnes lipase inhibitor. J Wood Sci 60(2):169–174

    CAS  Google Scholar 

  71. Moon JE, Shin J-H, Kwon O, Kim JY, Jomf J (2015) A standardized extract of rhus verniciflua stokes protects wistar rats against lipopolysaccharide-induced acute inflammation. J Med Food 18(11):1223–1230

    CAS  PubMed  Google Scholar 

  72. Kahkeshani N, Farzaei F, Fotouhi M et al (2019) Pharmacological effects of gallic acid in health and disease: a mechanistic review. Iran J Basic Med Sci 22(3):225–237

    PubMed  PubMed Central  Google Scholar 

  73. Lin WH, Kuo HH, Ho LH, Tseng ML, Siao AC, Hung CT et al (2015) Gardenia jasminoides extracts and gallic acid inhibit lipopolysaccharide-induced inflammation by suppression of JNK2/1 signaling pathways in BV-2 cells. Iran J Basic Med Sci 18(6):555–562

    PubMed  PubMed Central  Google Scholar 

  74. Wei G, Wu Y, Gao Q et al (2018) Gallic acid attenuates postoperative intra-abdominal adhesion by inhibiting inflammatory reaction in a rat model. Med Sci Monit 24:827–838

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Oyagbemi AA, Omobowale TO, Saba AB et al (2016) Gallic acid ameliorates cyclophosphamide-induced neurotoxicity in Wistar rats through free radical scavenging activity and improvement in antioxidant defense system. J Diet Suppl 13(4):402–419

    CAS  PubMed  Google Scholar 

  76. Mohamed HM, Abd El-Twab SM (2016) Gallic acid attenuates chromium-induced thyroid dysfunction by modulating antioxidant status and inflammatory cytokines. Environ Toxicol Pharmacol 48:225–236

    CAS  PubMed  Google Scholar 

  77. Tsai PJ, Huang WC, Hsieh MC et al (2015) Flavones isolated from scutellariae radix suppress propionibacterium acnes-induced cytokine production in vitro and in vivo. Molecules 21(1):E15

    PubMed  Google Scholar 

  78. Lim BO, Yu BP, Kim SC, Park DK (1999) The antioxidative effect of ganhuangenin against lipid peroxidation. Phytother Res 13(6):479–483

    CAS  PubMed  Google Scholar 

  79. Nian H, Ma M-H, Nian S-S, Xu L-L (2009) Antiosteoporotic activity of icariin in ovariectomized rats. Phytomedicine 16(4):320–326

    CAS  PubMed  Google Scholar 

  80. Xu CQ, Liu BJ, Wu JF et al (2010) Icariin attenuates LPS-induced acute inflammatory responses: involvement of PI3K/Akt and NF-kappaB signaling pathway. Eur J Pharmacol 642(1–3):146–153

    CAS  PubMed  Google Scholar 

  81. Kong L, Liu J, Wang J, Luo Q, Zhang H, Liu B et al (2015) Icariin inhibits TNF-alpha/IFN-gamma induced inflammatory response via inhibition of the substance P and p38-MAPK signaling pathway in human keratinocytes. Int Immunopharmacol 29(2):401–407

    CAS  PubMed  Google Scholar 

  82. Song YH, Cai H, Zhao ZM et al (2016) Icariin attenuated oxidative stress induced-cardiac apoptosis by mitochondria protection and ERK activation. Biomed Pharmacother 83:1089–1094

    CAS  PubMed  Google Scholar 

  83. Li WW, Gao XM, Wang XM, Guo H, Zhang BL (2011) Icariin inhibits hydrogen peroxide-induced toxicity through inhibition of phosphorylation of JNK/p38 MAPK and p53 activity. Mutat Res 708(1–2):1–10

    CAS  PubMed  Google Scholar 

  84. Demetzos C, Dimas KS (2001) Labdane-type diterpenes: chemistry and biological activity. Stud Nat Prod Chem 25:235–292

    CAS  Google Scholar 

  85. Girón N, Través PG, Rodríguez B et al (2008) Supression of inflammatory responses by labdane-type diterpenoids. Toxicol Appl Pharmacol 228(2):179–189

    PubMed  Google Scholar 

  86. Van Kiem P, Anh HLT, Nhiem NX et al (2012) Labdane-type diterpenoids from the rhizomes of Hedychium coronarium inhibit lipopolysaccharide-stimulated production of pro-inflammatory cytokines in bone marrow-derived dendritic cells. Chem Pharm Bull (Tokyo) 60(2):246–250

    CAS  Google Scholar 

  87. Liu F, He Y, Liang Y et al (2013) PI3-kinase inhibition synergistically promoted the anti-tumor effect of lupeol in Hepatocellular carcinoma. Cancer Cell Int 13(1):108

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kwon HH, Yoon JY, Park SY, Min S, Kim YI, Park JY et al (2015) Activity-guided purification identifies lupeol, a pentacyclic triterpene, as a therapeutic agent targeting multiple pathogenic factors of acne. Invest Dermatol 135(6):1491–1500

    CAS  Google Scholar 

  89. Zhu Y, Li X, Chen J, Chen T, Shi Z, Lei M et al (2016) The pentacyclic triterpene Lupeol switches M1 macrophages to M2 and ameliorates experimental inflammatory bowel disease. Int Immunopharmacol 30:74–84

    CAS  PubMed  Google Scholar 

  90. Prasad S, Kalra N, Singh M, Shukla Y (2008) Protective effects of lupeol and mango extract against androgen induced oxidative stress in Swiss albino mice. Asian J Androl 10(2):313–318

    PubMed  Google Scholar 

  91. Semwal DK, Semwal RB, Combrinck S, Viljoen A (2016) Myricetin: a dietary molecule with diverse biological activities. Nutrients 8(2):90

    PubMed  PubMed Central  Google Scholar 

  92. Hou W, Hu S, Su Z et al (2018) Myricetin attenuates LPS-induced inflammation in RAW 264.7 macrophages and mouse models. Future Med Chem 10(19):2253–2264

    CAS  PubMed  Google Scholar 

  93. da Lee H, Lee CS (2016) Flavonoid myricetin inhibits TNF-alpha-stimulated production of inflammatory mediators by suppressing the Akt, mTOR and NF-kappaB pathways in human keratinocytes. Eur J Pharmacol 784:164–172

    CAS  PubMed  Google Scholar 

  94. Cho BO, Yin HH, Park SH et al (2016) Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-kappaB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264.7 macrophages. Biosci Biotechnol Biochem 80(8):1520–1530

    CAS  PubMed  Google Scholar 

  95. Kang KA, Wang ZH, Zhang R et al (2010) Myricetin protects cells against oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways. Int J Mol Sci 11(11):4348–4360

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chobot V, Hadacek F (2011) Exploration of pro-oxidant and antioxidant activities of the flavonoid myricetin. Redox Rep 16(6):242–247

    CAS  PubMed  Google Scholar 

  97. Pereira M, Siba I, Chioca L et al (2011) Myricitrin, a nitric oxide and protein kinase C inhibitor, exerts antipsychotic-like effects in animal models. Prog Neuropsychopharmacol Biol Psychiatry 35(7):1636–1644

    CAS  PubMed  Google Scholar 

  98. Qi S, Feng Z, Li Q, Qi Z, Zhang Y (2017) Myricitrin modulates NADPH oxidase-dependent ROS production to inhibit endotoxin-mediated inflammation by blocking the JAK/STAT1 and NOX2/p47(phox) pathways. Oxid Med Cell Longev 2017:9738745

    PubMed  PubMed Central  Google Scholar 

  99. Gao J, Chen S, Qiu Z et al (2018) Myricitrin ameliorates ethanol-induced steatosis in mouse AML12 liver cells by activating AMPK, and reducing oxidative stress and expression of inflammatory cytokines. Mol Med Rep 17(5):7381–7387

    CAS  PubMed  Google Scholar 

  100. Domitrovic R, Rashed K, Cvijanovic O, Vladimir-Knezevic S, Skoda M, Visnic A (2015) Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chem Biol Interact 230:21–29

    CAS  PubMed  Google Scholar 

  101. Sun GB, Qin M, Ye JX et al (2013) Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE−/− mice. Toxicol Appl Pharmacol 271(1):114–126

    CAS  PubMed  Google Scholar 

  102. Jung MK, Ha S, Son JA et al (2012) Polyphenon-60 displays a therapeutic effect on acne by suppression of TLR2 and IL-8 expression via down-regulating the ERK1/2 pathway. Arch Dermatol Res 304(8):655–663

    CAS  PubMed  Google Scholar 

  103. Sidahmed HM, Hashim NM, Amir J et al (2013) Pyranocycloartobiloxanthone A, a novel gastroprotective compound from Artocarpus obtusus Jarret, against ethanol-induced acute gastric ulcer in vivo. Phytomedicine 20(10):834–843

    CAS  PubMed  Google Scholar 

  104. Hashim NM, Rahmani M, Ee GCL et al (2012) Antioxidant, antimicrobial and tyrosinase inhibitory activities of xanthones isolated from Artocarpus obtusus FM Jarrett. Molecules 17(5):6071–6082

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Farzaei MH, Rahimi R, Nikfar S, Abdollahi M (2018) Effect of resveratrol on cognitive and memory performance and mood: a meta-analysis of 225 patients. Pharmacol Res 128:338–344

    PubMed  Google Scholar 

  106. Taylor EJ, Yu Y, Champer J, Kim J (2014) Resveratrol demonstrates antimicrobial effects against propionibacterium acnes in vitro. Dermatol Ther (Heidelb) 4(2):249–257

    Google Scholar 

  107. Docherty JJ, McEwen HA, Sweet TJ, Bailey E, Booth TD (2007) Resveratrol inhibition of Propionibacterium acnes. J Antimicrob Chemother 59(6):1182–1184

    CAS  PubMed  Google Scholar 

  108. Leejae S, Hasap L, Voravuthikunchai SP (2013) Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. J Med Microbiol 62(Pt 3):421–428

    CAS  PubMed  Google Scholar 

  109. Chorachoo J, Amnuaikit T, Voravuthikunchai SP (2013) Liposomal encapsulated rhodomyrtone: a novel antiacne drug. Evid Based Complement Alternat Med 2013:157635

    PubMed  PubMed Central  Google Scholar 

  110. Saising J, Ongsakul M, Voravuthikunchai SP (2011) Rhodomyrtus tomentosa (Aiton) Hassk. ethanol extract and rhodomyrtone: a potential strategy for the treatment of biofilm-forming staphylococci. J Med Microbiol 60(12):1793–1800

    PubMed  Google Scholar 

  111. Park SY, Kim YH, Kim Y et al (2011) Upregulation of heme oxygenase-1 via PI3K/Akt and Nrf-2 signaling pathways mediates the anti-inflammatory activity of Schisandrin in Porphyromonas gingivalis LPS-stimulated macrophages. Immunol Lett 139:93–101

    CAS  PubMed  Google Scholar 

  112. Cai Z, Liu J, Bian H, Cai J, Zhu G (2016) Suppression of P2X7/NF-κB pathways by Schisandrin B contributes to attenuation of lipopolysaccharide-induced inflammatory responses in acute lung injury. Arch Pharm Res 39(4):499–507

    CAS  PubMed  Google Scholar 

  113. Ran J, Ma C, Xu K, et al (2018) Schisandrin B ameliorated chondrocytes inflammation and osteoarthritis via suppression of NF-kappaB and MAPK signal pathways. Drug Des Devel Ther 12:1195–1204

  114. Takanche JS, Lee YH, Kim JS et al (2018) Anti-inflammatory and antioxidant properties of Schisandrin C promote mitochondrial biogenesis in human dental pulp cells. Int Endod J 51(4):438–447

    CAS  PubMed  Google Scholar 

  115. Kwon DH, Cha HJ, Choi EO, Leem SH, Kim GY, Moon SK et al (2018) Schisandrin A suppresses lipopolysaccharide-induced inflammation and oxidative stress in RAW 264.7 macrophages by suppressing the NF-kappaB, MAPKs and PI3K/Akt pathways and activating Nrf2/HO-1 signaling. Int J Mol Med 41(1):264–74

  116. Ying W, Li ZC, Li-Qing Y, Mai L, Mei T (2018) Schisandrin B alleviates acute oxidative stress via modulating Nrf2/Keap1-mediated antioxidant pathway. Appl Physiol Nutr Metab 2018:1–24.

  117. Muddathir AM, Yamauchi K, Mitsunaga T (2013) Anti-acne activity of tannin-related compounds isolated from Terminalia laxiflora. J Wood Sci 59(5):426–431

    CAS  Google Scholar 

  118. Sultana N (2011) Clinically useful anticancer, antitumor, and antiwrinkle agent, ursolic acid and related derivatives as medicinally important natural product. J Enzyme Inhib Med Chem 26(5):616–642

    CAS  PubMed  Google Scholar 

  119. Zhang Z, Zhang H, Chen R, Wang Z (2018) Oral supplementation with ursolic acid ameliorates sepsis-induced acute kidney injury in a mouse model by inhibiting oxidative stress and inflammatory responses. Mol Med Rep 17(5):7142–7148

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Peng J, Ren X, Lan T et al (2016) Renoprotective effects of ursolic acid on ischemia/reperfusion induced acute kidney injury through oxidative stress, inflammation and the inhibition of STAT3 and NFkappaB activities. Mol Med Rep 14(4):3397–3402

    CAS  PubMed  Google Scholar 

  121. Ma JQ, Ding J, Zhang L, Liu CM (2014) Ursolic acid protects mouse liver against CCl4-induced oxidative stress and inflammation by the MAPK/NF-kappaB pathway. Environ Toxicol Pharmacol 37(3):975–983

    CAS  PubMed  Google Scholar 

  122. Fabbrocini G, Staibano S, De Rosa G et al (2011) Resveratrol-containing gel for the treatment of acne vulgaris: a single-blind, vehicle-controlled, pilot study. Am J Clin Dermatol 12(2):133–141

    PubMed  Google Scholar 

  123. Pan-In P, Wongsomboon A, Kokpol C, Chaichanawongsaroj N, Wanichwecharungruang S (2015) Depositing alpha-mangostin nanoparticles to sebaceous gland area for acne treatment. J Pharmacol Sci 129(4):226–232

    CAS  PubMed  Google Scholar 

  124. Lee JW, Kang YJ, Choi HK, Yoon YG (2018) Fractionated Coptis chinensis extract and its bioactive component suppress Propionibacterium acnes-stimulated inflammation in human keratinocytes. J Microbiol Biotechnol

  125. Im M, Kim SY, Sohn KC, Choi DK, Lee Y, Seo YJ et al (2012) Epigallocatechin-3-gallate suppresses IGF-I-induced lipogenesis and cytokine expression in SZ95 sebocytes. J Invest Dermatol 132(12):2700–2708

    CAS  PubMed  Google Scholar 

  126. Coenye T, Brackman G, Rigole P, De Witte E, Honraet K, Rossel B et al (2012) Eradication of Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds. Phytomedicine 19(5):409–412

    CAS  PubMed  Google Scholar 

  127. Sultan MZ, Jeon YM, Moon SS (2008) Labdane-type diterpenes active against acne from pine cones (Pinus densiflora). Planta med 74(4):449–452

    CAS  PubMed  Google Scholar 

  128. Sharma R, Kishore N, Hussein A, Lall N (2013) Antibacterial and anti-inflammatory effects of Syzygium jambos L. (Alston) and isolated compounds on acne vulgaris. BMC Complement Altern Med 13:292

  129. Wunnoo S, Saising J, Voravuthikunchai SP (2017) Rhodomyrtone inhibits lipase production, biofilm formation, and disorganizes established biofilm in Propionibacterium acnes. Anaerobe 43:61–68

    CAS  PubMed  Google Scholar 

  130. Saising J, Voravuthikunchai SP (2012) Anti-Propionibacterium acnes activity of rhodomyrtone, an effective compound from Rhodomyrtus tomentosa (Aiton) Hassk. leaves. Anaerobe 18(4):400–404

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roja Rahimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleymani, S., Farzaei, M.H., Zargaran, A. et al. Promising plant-derived secondary metabolites for treatment of acne vulgaris: a mechanistic review. Arch Dermatol Res 312, 5–23 (2020). https://doi.org/10.1007/s00403-019-01968-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-019-01968-z

Keywords

Navigation