Abstract
The MadGraph5_aMC@NLO framework aims to automate all types of leading- and next-to-leading-order-accurate simulations for any user-defined model that stems from a renormalisable Lagrangian. In this paper, we present all of the key ingredients of such models in the context of supersymmetric theories. In order to do so, we extend the FeynRules package by giving it the possibility of dealing with different renormalisation options that are relevant to supersymmetric models. We also show how to deal with the problem posed by the presence of narrow resonances, thus generalising the so-called on-shell subtraction approaches. We extensively compare our total rate results with those of both Prospino2 and Resummino, and present illustrative applications relevant to the 13 TeV LHC, both at the total-rate and differential levels. The computer programmes that we have used to obtain the predictions presented here are all publicly available.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Yu.A. Golfand and E.P. Likhtman, Extension of the Algebra of Poincare Group Generators and Violation of p Invariance, JETP Lett.13 (1971) 323 [Pisma Zh. Eksp. Tear. Fiz.13 (1971) 452] [INSPIRE].
D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett.46B (1973) 109 [INSPIRE].
J. Wess and B. Zumino, A Lagrangian Model Invariant Under Supergauge Transformations, Phys. Lett.49B (1974) 52 [INSPIRE].
J. Wess and B. Zumino, Supergauge Transformations in Four-Dimensions, Nucl. Phys.B 70 (1974) 39 [INSPIRE].
J. Wess and B. Zumino, Supergauge Invariant Extension of Quantum Electrodynamics, Nucl. Phys.B 78 (1974) 1 [INSPIRE].
A. Salam and J.A. Strathdee, Supergauge Transformations, Nucl. Phys.B 76 (1974) 477 [INSPIRE].
A. Salam and J.A. Strathdee, On Superfields and Fermi-Bose Symmetry , Phys. Rev.D 11 (1975) 1521 [INSPIRE].
S. Ferrara, J. Wess and B. Zumino, Supergauge Multiplets and Superfields, Phys. Lett.51B (1974) 239 [INSPIRE].
S. Ferrara and B. Zumino, Supergauge Invariant Yang-Mills Theories, Nucl. Phys.B 79 (1974) 413 [INSPIRE].
H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept.110 (1984) 1 [INSPIRE].
H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept.117 (1985) 75 [INSPIRE].
E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys.B 188 (1981) 513 [INSPIRE].
L.E. Ibáñez and G.G. Ross, Low-Energy Predictions in Supersymmetric Grand Unified Theories, Phys. Lett.105B (1981) 439 [INSPIRE].
S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the Scale of Unification, Phys. Rev.D 24 (1981) 1681 [INSPIRE].
J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett.B 260 (1991) 131 [INSPIRE].
H. Goldberg, Constraint on the Photino Mass from Cosmology, Phys. Rev. Lett.50 (1983) 1419 [Erratum ibid.103 (2009) 099905] [INSPIRE].
J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric Relics from the Big Bang, Nucl. Phys.B 238 (1984) 453 [INSPIRE].
ATLAS collaboration, Search for supersymmetry in final states with missing transverse momentum and multiple b-jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2018-041 (2018).
ATLAS collaboration, Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, b-jets and missing transverse momentum, ATLAS-CONF-2019-011 (2019).
CMS collaboration, Searches for new phenomena in events with jets and high values of the M T2variable, including signatures with disappearing tracks, in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-SUS-19-005 (2019).
CMS collaboration, Search for physics beyond the standard model in events with two same-sign leptons or at least three leptons and jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV., CMS-PAS-SUS-19-008 (2019).
ATLAS collaboration, Search for electroweak production of charginos and sleptons decaying in final states with two leptons and missing transverse momentum in \( \sqrt{s} \) = 13 TeV pp collisions using the ATLAS detector, ATLAS-CONF-2019-008 (2019).
CMS collaboration, Search for direct τ slepton pair production in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-SUS-18-006 (2018).
J. Alwall, P. Schuster and N. Toro, Simplified Models for a First Characterization of New Physics at the LHC, Phys. Rev.D 79 (2009) 075020 [arXiv:0810.3921] [INSPIRE].
LHC New Physics Working Group collaboration, Simplified Models for LHC New Physics Searches, J. Phys.G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].
S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP11 (2001) 063 [hep-ph/0109231] [INSPIRE].
F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP08 (2002) 015 [hep-ph/0205283] [INSPIRE].
M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP01 (2007) 013 [hep-ph/0611129] [INSPIRE].
L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP05 (2002) 046 [hep-ph/0112284] [INSPIRE].
N. Lavesson and L. Lönnblad, W+jets matrix elements and the dipole cascade, JHEP07 (2005) 054 [hep-ph/0503293] [INSPIRE].
S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP05 (2009) 053 [arXiv:0903.1219] [INSPIRE].
K. Hamilton, P. Richardson and J. Tully, A modified CKKW matrix element merging approach to angular-ordered parton showers, JHEP11 (2009) 038 [arXiv:0905.3072] [INSPIRE].
L. Lönnblad and S. Prestel, Matching Tree-Level Matrix Elements with Interleaved Showers, JHEP03 (2012) 019 [arXiv:1109.4829] [INSPIRE].
S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP06 (2002) 029 [hep-ph/0204244] [INSPIRE].
P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE].
Z. Nagy and D.E. Soper, Matching parton showers to NLO computations, JHEP10 (2005) 024 [hep-ph/0503053] [INSPIRE].
C.W. Bauer and M.D. Schwartz, Event Generation from Effective Field Theory, Phys. Rev.D 76 (2007) 074004 [hep-ph/0607296] [INSPIRE].
Z. Nagy and D.E. Soper, Parton showers with quantum interference, JHEP09 (2007) 114 [arXiv:0706.0017] [INSPIRE].
W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev.D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].
C.W. Bauer, F.J. Tackmann and J. Thaler, GenEvA. I. A new framework for event generation, JHEP12 (2008) 010 [arXiv:0801.4026] [INSPIRE].
S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, A critical appraisal of NLO+PS matching methods, JHEP09 (2012) 049 [arXiv:1111.1220] [INSPIRE].
K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson production, JHEP10 (2013) 222 [arXiv:1309.0017] [INSPIRE].
S. Jadach, W. P-laczek, S. Sapeta, A. Siódmok and M. Skrzypek, Matching NLO QCD with parton shower in Monte Carlo scheme — the KrkNLO method, JHEP10 (2015) 052 [arXiv:1503.06849] [INSPIRE].
N. Lavesson and L. Lönnblad, Extending CKKW-merging to One-Loop Matrix Elements, JHEP12 (2008) 070 [arXiv:0811.2912] [INSPIRE].
K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP06 (2010) 039 [arXiv:1004.1764] [INSPIRE].
S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO matrix elements and truncated showers, JHEP08 (2011) 123 [arXiv:1009.1127] [INSPIRE].
W.T. Giele, D.A. Kosower and P.Z. Skands, Higher-Order Corrections to Timelike Jets, Phys. Rev.D 84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].
S. Alioli, K. Hamilton and E. Re, Practical improvements and merging of POWHEG simulations for vector boson production, JHEP09 (2011) 104 [arXiv:1108.0909] [INSPIRE].
S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, JHEP04 (2013) 027 [arXiv:1207.5030] [INSPIRE].
R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP12 (2012) 061 [arXiv:1209.6215] [INSPIRE].
S. Plätzer, Controlling inclusive cross sections in parton shower + matrix element merging, JHEP08 (2013) 114 [arXiv:1211.5467] [INSPIRE].
S. Alioli et al., Combining Higher-Order Resummation with Multiple NLO Calculations and Parton Showers in GENEVA, JHEP09 (2013) 120 [arXiv:1211.7049] [INSPIRE].
L. Lönnblad and S. Prestel, Merging Multi-leg NLO Matrix Elements with Parton Showers, JHEP03 (2013) 166 [arXiv:1211.7278] [INSPIRE].
K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP05 (2013) 082 [arXiv:1212.4504] [INSPIRE].
S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann, J.R. Walsh and S. Zuberi, Matching Fully Differential NNLO Calculations and Parton Showers, JHEP06 (2014) 089 [arXiv:1311.0286] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun.183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
C. Degrande, Automatic evaluation of UV and R2 terms for beyond the Standard Model Lagrangians: a proof-of-principle, Comput. Phys. Commun.197 (2015) 239 [arXiv:1406.3030] [INSPIRE].
G.R. Farrar and P. Fayet, Phenomenology of the Production, Decay and Detection of New Hadronic States Associated with Supersymmetry, Phys. Lett.76B (1978) 575 [INSPIRE].
J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, (1992).
B. Fuks, Supersymmetry — When Theory Inspires Experimental Searches, Habilitation thesis, Strasbourg University, 2013, arXiv:1401.6277 [INSPIRE].
L. Girardello and M.T. Grisaru, Soft Breaking of Supersymmetry, Nucl. Phys.B 194 (1982) 65 [INSPIRE].
L.J. Hall, V.A. Kostelecky and S. Raby, New Flavor Violations in Supergravity Models, Nucl. Phys.B 267 (1986) 415 [INSPIRE].
P.Z. Skands et al., SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages and event generators, JHEP07 (2004) 036 [hep-ph/0311123] [INSPIRE].
P.H. Chankowski, S. Pokorski and J. Rosiek, Complete on-shell renormalization scheme for the minimal supersymmetric Higgs sector, Nucl. Phys.B 423 (1994) 437 [hep-ph/9303309] [INSPIRE].
A. Dabelstein, The one loop renormalization of the MSSM Higgs sector and its application to the neutral scalar Higgs masses, Z. Phys.C 67 (1995) 495 [hep-ph/9409375] [INSPIRE].
D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys.B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].
M.D. Goodsell, K. Nickel and F. Staub, Two-Loop Higgs mass calculations in supersymmetric models beyond the MSSM with SARAH and SPheno, Eur. Phys. J.C 75 (2015) 32 [arXiv:1411.0675] [INSPIRE].
R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, The automation of next-to-leading order electroweak calculations, JHEP07 (2018) 185 [arXiv:1804.10017] [INSPIRE].
G. Passarino and M.J.G. Veltman, One Loop Corrections for e +e −Annihilation Into μ +μ −in the Weinberg Model, Nucl. Phys.B 160 (1979) 151 [INSPIRE].
H. Eberl, A. Bartl and W. Majerotto, SUSY QCD corrections to scalar quark pair production in e +e −annihilation, Nucl. Phys.B 472 (1996) 481 [hep-ph/9603206] [INSPIRE].
C. Degrande, B. Fuks, V. Hirschi, J. Proudom and H.-S. Shao, Automated next-to-leading order predictions for new physics at the LHC: the case of colored scalar pair production, Phys. Rev.D 91 (2015) 094005 [arXiv:1412.5589] [INSPIRE].
C. Degrande, B. Fuks, V. Hirschi, J. Proudom and H.-S. Shao, Matching next-to-leading order predictions to parton showers in supersymmetric QCD, Phys. Lett.B 755 (2016) 82 [arXiv:1510.00391] [INSPIRE].
Y. Yamada, Radiative corrections to sfermion mass splittings, Phys. Rev.D 54 (1996) 1150 [hep-ph/9602279] [INSPIRE].
A. Bartl, H. Eberl, K. Hidaka, T. Kon, W. Majerotto and Y. Yamada, QCD corrections to Higgs boson decays into squarks in the minimal supersymmetric standard model, Phys. Lett.B 402 (1997) 303 [hep-ph/9701398] [INSPIRE].
A. Bartl et al., SUSY — QCD corrections to top and bottom squark decays into Higgs bosons, Phys. Rev.D 59 (1999) 115007 [hep-ph/9806299] [INSPIRE].
H. Eberl, K. Hidaka, S. Kraml, W. Majerotto and Y. Yamada, Improved SUSY QCD corrections to Higgs boson decays into quarks and squarks, Phys. Rev.D 62 (2000) 055006 [hep-ph/9912463] [INSPIRE].
W. Hollik and H. Rzehak, The sfermion mass spectrum of the MSSM at the one loop level, Eur. Phys. J.C 32 (2003) 127 [hep-ph/0305328] [INSPIRE].
S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the MSSM Higgs sector at O(α bα s), Eur. Phys. J.C 39 (2005) 465 [hep-ph/0411114] [INSPIRE].
W. Hollik and E. Mirabella, Squark anti-squark pair production at the LHC: The electroweak contribution, JHEP12 (2008) 087 [arXiv:0806.1433] [INSPIRE].
A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two loop sbottom corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys.B 643 (2002) 79 [hep-ph/0206101] [INSPIRE].
G. Degrassi and P. Slavich, NLO QCD bottom corrections to Higgs boson production in the MSSM, JHEP11 (2010) 044 [arXiv:1007.3465] [INSPIRE].
S. Heinemeyer, H. Rzehak and C. Schappacher, Proposals for Bottom Quark/Squark Renormalization in the Complex MSSM, Phys. Rev.D 82 (2010) 075010 [arXiv:1007.0689] [INSPIRE].
J.C. Collins, F. Wilczek and A. Zee, Low-Energy Manifestations of Heavy Particles: Application to the Neutral Current, Phys. Rev.D 18 (1978) 242 [INSPIRE].
W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories, Phys. Rev.D 18 (1978) 3998 [INSPIRE].
W.J. Marciano, Flavor Thresholds and Λ in the Modified Minimal Subtraction Prescription, Phys. Rev.D 29 (1984) 580 [INSPIRE].
S.P. Martin and M.T. Vaughn, Regularization dependence of running couplings in softly broken supersymmetry, Phys. Lett.B 318 (1993) 331 [hep-ph/9308222] [INSPIRE].
T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [INSPIRE].
B. Fuks, K. Nordström, R. Ruiz and S.L. Williamson, Sleptons without Hadrons, Phys. Rev.D 100 (2019) 074010 [arXiv:1901.09937] [INSPIRE].
C. Duhr and B. Fuks, A superspace module for the FeynRules package, Comput. Phys. Commun.182 (2011) 2404 [arXiv:1102.4191] [INSPIRE].
W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark production at the Tevatron, Phys. Rev. Lett.74 (1995) 2905 [hep-ph/9412272] [INSPIRE].
W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys.B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].
G. Bozzi, B. Fuks and M. Klasen, Non-diagonal and mixed squark production at hadron colliders, Phys. Rev.D 72 (2005) 035016 [hep-ph/0507073] [INSPIRE].
A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett.102 (2009) 111802 [arXiv:0807.2405] [INSPIRE].
A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev.D 80 (2009) 095004 [arXiv:0905.4749] [INSPIRE].
W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen and I. Niessen, Soft-gluon resummation for squark and gluino hadroproduction, JHEP12 (2009) 041 [arXiv:0909.4418] [INSPIRE].
W. Beenakker et al., Squark and Gluino Hadroproduction, Int. J. Mod. Phys.A 26 (2011) 2637 [arXiv:1105.1110] [INSPIRE].
M.R. Kauth, J.H. Kuhn, P. Marquard and M. Steinhauser, Gluino Pair Production at the LHC: The Threshold, Nucl. Phys.B 857 (2012) 28 [arXiv:1108.0361] [INSPIRE].
P. Falgari, C. Schwinn and C. Wever, NLL soft and Coulomb resummation for squark and gluino production at the LHC, JHEP06 (2012) 052 [arXiv:1202.2260] [INSPIRE].
W. Beenakker, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Stop production at hadron colliders, Nucl. Phys.B 515 (1998) 3 [hep-ph/9710451] [INSPIRE].
W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen and I. Niessen, Supersymmetric top and bottom squark production at hadron colliders, JHEP08 (2010) 098 [arXiv:1006.4771] [INSPIRE].
M. Beneke, P. Falgari and C. Schwinn, Threshold resummation for pair production of coloured heavy (s)particles at hadron colliders, Nucl. Phys.B 842 (2011) 414 [arXiv:1007.5414] [INSPIRE].
W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Gluino pair production at the Tevatron, Z. Phys.C 69 (1995) 163 [hep-ph/9505416] [INSPIRE].
W. Beenakker, M. Klasen, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, The production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett.83 (1999) 3780 [Erratum ibid.100 (2008) 029901] [hep-ph/9906298] [INSPIRE].
J. Debove, B. Fuks and M. Klasen, Transverse-momentum resummation for gaugino-pair production at hadron colliders, Phys. Lett.B 688 (2010) 208 [arXiv:0907.1105] [INSPIRE].
J. Debove, B. Fuks and M. Klasen, Threshold resummation for gaugino pair production at hadron colliders, Nucl. Phys.B 842 (2011) 51 [arXiv:1005.2909] [INSPIRE].
J. Debove, B. Fuks and M. Klasen, Joint Resummation for Gaugino Pair Production at Hadron Colliders, Nucl. Phys.B 849 (2011) 64 [arXiv:1102.4422] [INSPIRE].
B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Gaugino production in proton-proton collisions at a center-of-mass energy of 8 TeV, JHEP10 (2012) 081 [arXiv:1207.2159] [INSPIRE].
G. Bozzi, B. Fuks and M. Klasen, Transverse-momentum resummation for slepton-pair production at the CERN LHC, Phys. Rev.D 74 (2006) 015001 [hep-ph/0603074] [INSPIRE].
G. Bozzi, B. Fuks and M. Klasen, Threshold Resummation for Slepton-Pair Production at Hadron Colliders, Nucl. Phys.B 777 (2007) 157 [hep-ph/0701202] [INSPIRE].
G. Bozzi, B. Fuks and M. Klasen, Joint resummation for slepton pair production at hadron colliders, Nucl. Phys.B 794 (2008) 46 [arXiv:0709.3057] [INSPIRE].
B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Revisiting slepton pair production at the Large Hadron Collider, JHEP01 (2014) 168 [arXiv:1310.2621] [INSPIRE].
E.L. Berger, M. Klasen and T.M.P. Tait, Next-to-leading order SUSY QCD predictions for associated production of gauginos and gluinos, Phys. Rev.D 62 (2000) 095014 [hep-ph/0212306] [INSPIRE].
B. Fuks, M. Klasen and M. Rothering, Soft gluon resummation for associated gluino-gaugino production at the LHC, JHEP07 (2016) 053 [arXiv:1604.01023] [INSPIRE].
W. Hollik, J.M. Lindert and D. Pagani, NLO corrections to squark-squark production and decay at the LHC, JHEP03 (2013) 139 [arXiv:1207.1071] [INSPIRE].
W. Hollik, J.M. Lindert and D. Pagani, On cascade decays of squarks at the LHC in NLO QCD, Eur. Phys. J.C 73 (2013) 2410 [arXiv:1303.0186] [INSPIRE].
U. Langenfeld and S.-O. Moch, Higher-order soft corrections to squark hadro-production, Phys. Lett.B 675 (2009) 210 [arXiv:0901.0802] [INSPIRE].
U. Langenfeld, Threshold Improved QCD Corrections for Stop-Antistop production at Hadron colliders, JHEP07 (2011) 052 [arXiv:1011.3341] [INSPIRE].
U. Langenfeld, S.-O. Moch and T. Pfoh, QCD threshold corrections for gluino pair production at hadron colliders, JHEP11 (2012) 070 [arXiv:1208.4281] [INSPIRE].
W. Hollik, M. Kollar and M.K. Trenkel, Hadronic production of top-squark pairs with electroweak NLO contributions, JHEP02 (2008) 018 [arXiv:0712.0287] [INSPIRE].
M. Beccaria, G. Macorini, L. Panizzi, F.M. Renard and C. Verzegnassi, Stop-antistop and sbottom-antisbottom production at LHC: A One-loop search for model parameters dependence, Int. J. Mod. Phys.A 23 (2008) 4779 [arXiv:0804.1252] [INSPIRE].
W. Hollik, E. Mirabella and M.K. Trenkel, Electroweak contributions to squark-gluino production at the LHC, JHEP02 (2009) 002 [arXiv:0810.1044] [INSPIRE].
E. Mirabella, NLO electroweak contributions to gluino pair production at hadron colliders, JHEP12 (2009) 012 [arXiv:0908.3318] [INSPIRE].
A. Arhrib, R. Benbrik, K. Cheung and T.-C. Yuan, Higgs boson enhancement effects on squark-pair production at the LHC, JHEP02 (2010) 048 [arXiv:0911.1820] [INSPIRE].
J. Germer, W. Hollik, E. Mirabella and M.K. Trenkel, Hadronic production of squark-squark pairs: The electroweak contributions, JHEP08 (2010) 023 [arXiv:1004.2621] [INSPIRE].
J. Germer, W. Hollik and E. Mirabella, Hadronic production of bottom-squark pairs with electroweak contributions, JHEP05 (2011) 068 [arXiv:1103.1258] [INSPIRE].
J. Germer, W. Hollik, J.M. Lindert and E. Mirabella, Top-squark pair production at the LHC: a complete analysis at next-to-leading order, JHEP09 (2014) 022 [arXiv:1404.5572] [INSPIRE].
W. Hollik, J.M. Lindert, E. Mirabella and D. Pagani, Electroweak corrections to squark-antisquark production at the LHC, JHEP08 (2015) 099 [arXiv:1506.01052] [INSPIRE].
W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen and I. Niessen, NNLL resummation for squark-antisquark pair production at the LHC, JHEP01 (2012) 076 [arXiv:1110.2446] [INSPIRE].
T. Pfoh, Phenomenology of QCD threshold resummation for gluino pair production at NNLL, JHEP05 (2013) 044 [Erratum ibid.10 (2013) 090] [arXiv:1302.7202] [INSPIRE].
A. Broggio, A. Ferroglia, M. Neubert, L. Vernazza and L.L. Yang, Approximate NNLO Predictions for the Stop-Pair Production Cross Section at the LHC, JHEP07 (2013) 042 [arXiv:1304.2411] [INSPIRE].
W. Beenakker et al., Towards NNLL resummation: hard matching coefficients for squark and gluino hadroproduction, JHEP10 (2013) 120 [arXiv:1304.6354] [INSPIRE].
W. Beenakker et al., NNLL resummation for squark and gluino production at the LHC, JHEP12 (2014) 023 [arXiv:1404.3134] [INSPIRE].
W. Beenakker, C. Borschensky, R. Heger, M. Krämer, A. Kulesza and E. Laenen, NNLL resummation for stop pair-production at the LHC, JHEP05 (2016) 153 [arXiv:1601.02954] [INSPIRE].
M. Beneke, J. Piclum, C. Schwinn and C. Wever, NNLL soft and Coulomb resummation for squark and gluino production at the LHC, JHEP10 (2016) 054 [arXiv:1607.07574] [INSPIRE].
A. Alves, O. Eboli and T. Plehn, Stop lepton associated production at hadron colliders, Phys. Lett.B 558 (2003) 165 [hep-ph/0211441] [INSPIRE].
X.-P. Li, L. Guo, W.-G. Ma, L. Han, R.-Y. Zhang and S.-M. Wang, Single Slepton Production Associated with a Top Quark at LHC in NLO QCD, Eur. Phys. J.C 72 (2012) 1918 [arXiv:1202.5592] [INSPIRE].
G. Bozzi, B. Fuks, B. Herrmann and M. Klasen, Squark and gaugino hadroproduction and decays in non-minimal flavour violating supersymmetry, Nucl. Phys.B 787 (2007) 1 [arXiv:0704.1826] [INSPIRE].
B. Fuks, B. Herrmann and M. Klasen, Flavour Violation in Gauge-Mediated Supersymmetry Breaking Models: Experimental Constraints and Phenomenology at the LHC, Nucl. Phys.B 810 (2009) 266 [arXiv:0808.1104] [INSPIRE].
B. Fuks, B. Herrmann and M. Klasen, Phenomenology of anomaly-mediated supersymmetry breaking scenarios with non-minimal flavour violation, Phys. Rev.D 86 (2012) 015002 [arXiv:1112.4838] [INSPIRE].
T. Binoth, D. Gonçalves Netto, D. Lopez-Val, K. Mawatari, T. Plehn and I. Wigmore, Automized Squark-Neutralino Production to Next-to-Leading Order, Phys. Rev.D 84 (2011) 075005 [arXiv:1108.1250] [INSPIRE].
D. Gonçalves-Netto, D. López-Val, K. Mawatari, T. Plehn and I. Wigmore, Automated Squark and Gluino Production to Next-to-Leading Order, Phys. Rev.D 87 (2013) 014002 [arXiv:1211.0286] [INSPIRE].
D. Gonçalves, D. Lopez-Val, K. Mawatari and T. Plehn, Automated third generation squark production to next-to-leading order, Phys. Rev.D 90 (2014) 075007 [arXiv:1407.4302] [INSPIRE].
W. Beenakker et al., NLO+NLL squark and gluino production cross-sections with threshold-improved parton distributions, Eur. Phys. J.C 76 (2016) 53 [arXiv:1510.00375] [INSPIRE].
W. Beenakker, C. Borschensky, M. Krämer, A. Kulesza and E. Laenen, NNLL-fast: predictions for coloured supersymmetric particle production at the LHC with threshold and Coulomb resummation, JHEP12 (2016) 133 [arXiv:1607.07741] [INSPIRE].
B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Precision predictions for electroweak superpartner production at hadron colliders with Resummino, Eur. Phys. J.C 73 (2013) 2480 [arXiv:1304.0790] [INSPIRE].
R. Gavin et al., Matching Squark Pair Production at NLO with Parton Showers, JHEP10 (2013) 187 [arXiv:1305.4061] [INSPIRE].
R. Gavin et al., Squark Production and Decay matched with Parton Showers at NLO, Eur. Phys. J.C 75 (2015) 29 [arXiv:1407.7971] [INSPIRE].
J. Baglio, B. Jäger and M. Kesenheimer, Electroweakino pair production at the LHC: NLO SUSY-QCD corrections and parton-shower effects, JHEP07 (2016) 083 [arXiv:1605.06509] [INSPIRE].
J. Baglio, B. Jäger and M. Kesenheimer, Precise predictions for electroweakino-pair production in association with a jet at the LHC, JHEP07 (2018) 055 [arXiv:1711.00730] [INSPIRE].
B. Jäger, A. von Manteuffel and S. Thier, Slepton pair production in the POWHEG BOX, JHEP10 (2012) 130 [arXiv:1208.2953] [INSPIRE].
B. Jäger, A. von Manteuffel and S. Thier, Slepton pair production in association with a jet: NLO-QCD corrections and parton-shower effects, JHEP02 (2015) 041 [arXiv:1410.3802] [INSPIRE].
S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].
S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys.B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].
R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: The FKS subtraction, JHEP10 (2009) 003 [arXiv:0908.4272] [INSPIRE].
R. Frederix, S. Frixione, A.S. Papanastasiou, S. Prestel and P. Torrielli, Off-shell single-top production at NLO matched to parton showers, JHEP06 (2016) 027 [arXiv:1603.01178] [INSPIRE].
G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].
P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP06 (2012) 095 [Erratum ibid.11 (2012) 128] [arXiv:1203.0291] [INSPIRE].
A.I. Davydychev, A simple formula for reducing Feynman diagrams to scalar integrals, Phys. Lett.B 263 (1991) 107 [INSPIRE].
A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys.B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].
V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP05 (2011) 044 [arXiv:1103.0621] [INSPIRE].
G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: A program implementing the OPP reduction method to compute one-loop amplitudes, JHEP03 (2008) 042 [arXiv:0711.3596] [INSPIRE].
T. Peraro, Ninja: Automated Integrand Reduction via Laurent Expansion for One-Loop Amplitudes, Comput. Phys. Commun.185 (2014) 2771 [arXiv:1403.1229] [INSPIRE].
V. Hirschi and T. Peraro, Tensor integrand reduction via Laurent expansion, JHEP06 (2016) 060 [arXiv:1604.01363] [INSPIRE].
H.-S. Shao, Iregi user manual, unpublished.
A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun.212 (2017) 220 [arXiv:1604.06792] [INSPIRE].
F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett.108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].
F. Staub, SARAH 3.2: Dirac Gauginos, UFO output and more, Comput. Phys. Commun.184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].
G. Cacciapaglia, E. Conte, A. Deandrea, B. Fuks and H.-S. Shao, LHC constraints and potential on resonant monotop production, Eur. Phys. J.C 79 (2019) 174 [arXiv:1811.03626] [INSPIRE].
B. Fuks and H.-S. Shao, QCD next-to-leading-order predictions matched to parton showers for vector-like quark models, Eur. Phys. J.C 77 (2017) 135 [arXiv:1610.04622] [INSPIRE].
G. Cacciapaglia et al., Next-to-leading-order predictions for single vector-like quark production at the LHC, Phys. Lett.B 793 (2019) 206 [arXiv:1811.05055] [INSPIRE].
D. Buarque Franzosi, E. Vryonidou and C. Zhang, Scalar production and decay to top quarks including interference effects at NLO in QCD in an EFT approach, JHEP10 (2017) 096 [arXiv:1707.06760] [INSPIRE].
G. Das, C. Degrande, V. Hirschi, F. Maltoni and H.-S. Shao, NLO predictions for the production of a spin-two particle at the LHC, Phys. Lett.B 770 (2017) 507 [arXiv:1605.09359] [INSPIRE].
R. Frederix et al., Diphoton production in the ADD model to NLO+parton shower accuracy at the LHC, JHEP12 (2012) 102 [arXiv:1209.6527] [INSPIRE].
R. Frederix, M.K. Mandal, P. Mathews, V. Ravindran and S. Seth, Drell-Yan, ZZ, W W −production in SM & ADD model to NLO+PS accuracy at the LHC, Eur. Phys. J.C 74 (2014) 2745 [arXiv:1307.7013] [INSPIRE].
G. Das, P. Mathews, V. Ravindran and S. Seth, RS resonance in di-final state production at the LHC to NLO+PS accuracy, JHEP10 (2014) 188 [arXiv:1408.3970] [INSPIRE].
C. Degrande, M. Ubiali, M. Wiesemann and M. Zaro, Heavy charged Higgs boson production at the LHC, JHEP10 (2015) 145 [arXiv:1507.02549] [INSPIRE].
C. Degrande, R. Frederix, V. Hirschi, M. Ubiali, M. Wiesemann and M. Zaro, Accurate predictions for charged Higgs production: Closing the \( {m}_{H^{\pm }} \)∼ m twindow, Phys. Lett.B 772 (2017) 87 [arXiv:1607.05291] [INSPIRE].
C. Degrande, K. Hartling, H.E. Logan, A.D. Peterson and M. Zaro, Automatic predictions in the Georgi-Machacek model at next-to-leading order accuracy, Phys. Rev.D 93 (2016) 035004 [arXiv:1512.01243] [INSPIRE].
P. Artoisenet et al., A framework for Higgs characterisation, JHEP11 (2013) 043 [arXiv:1306.6464] [INSPIRE].
F. Maltoni, K. Mawatari and M. Zaro, Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects, Eur. Phys. J.C 74 (2014) 2710 [arXiv:1311.1829] [INSPIRE].
F. Demartin, F. Maltoni, K. Mawatari, B. Page and M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction, Eur. Phys. J.C 74 (2014) 3065 [arXiv:1407.5089] [INSPIRE].
F. Demartin, F. Maltoni, K. Mawatari and M. Zaro, Higgs production in association with a single top quark at the LHC, Eur. Phys. J.C 75 (2015) 267 [arXiv:1504.00611] [INSPIRE].
F. Demartin, B. Maier, F. Maltoni, K. Mawatari and M. Zaro, tWH associated production at the LHC, Eur. Phys. J.C 77 (2017) 34 [arXiv:1607.05862] [INSPIRE].
C. Degrande, B. Fuks, K. Mawatari, K. Mimasu and V. Sanz, Electroweak Higgs boson production in the standard model effective field theory beyond leading order in QCD, Eur. Phys. J.C 77 (2017) 262 [arXiv:1609.04833] [INSPIRE].
C. Degrande, F. Maltoni, J. Wang and C. Zhang, Automatic computations at next-to-leading order in QCD for top-quark flavor-changing neutral processes, Phys. Rev.D 91 (2015) 034024 [arXiv:1412.5594] [INSPIRE].
G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev.D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE].
O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD, JHEP05 (2016) 052 [arXiv:1601.08193] [INSPIRE].
F. Maltoni, E. Vryonidou and C. Zhang, Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD, JHEP10 (2016) 123 [arXiv:1607.05330] [INSPIRE].
C. Zhang, Single Top Production at Next-to-Leading Order in the Standard Model Effective Field Theory, Phys. Rev. Lett.116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].
D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev.D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE].
V. Hirschi, F. Maltoni, I. Tsinikos and E. Vryonidou, Constraining anomalous gluon self-interactions at the LHC: a reappraisal, JHEP07 (2018) 093 [arXiv:1806.04696] [INSPIRE].
C. Degrande, A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions, JHEP02 (2014) 101 [arXiv:1308.6323] [INSPIRE].
C. Degrande, O. Mattelaer, R. Ruiz and J. Turner, Fully-Automated Precision Predictions for Heavy Neutrino Production Mechanisms at Hadron Colliders, Phys. Rev.D 94 (2016) 053002 [arXiv:1602.06957] [INSPIRE].
O. Mattelaer, M. Mitra and R. Ruiz, Automated Neutrino Jet and Top Jet Predictions at Next-to-Leading-Order with Parton Shower Matching in Effective Left-Right Symmetric Models, arXiv:1610.08985 [INSPIRE].
B. Fuks and R. Ruiz, A comprehensive framework for studying W′ and Z′ bosons at hadron colliders with automated jet veto resummation, JHEP05 (2017) 032 [arXiv:1701.05263] [INSPIRE].
O. Mattelaer and E. Vryonidou, Dark matter production through loop-induced processes at the LHC: the s-channel mediator case, Eur. Phys. J.C 75 (2015) 436 [arXiv:1508.00564] [INSPIRE].
M. Backović, M. Krämer, F. Maltoni, A. Martini, K. Mawatari and M. Pellen, Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators, Eur. Phys. J.C 75 (2015) 482 [arXiv:1508.05327] [INSPIRE].
M. Neubert, J. Wang and C. Zhang, Higher-Order QCD Predictions for Dark Matter Production in Mono-Z Searches at the LHC, JHEP02 (2016) 082 [arXiv:1509.05785] [INSPIRE].
C. Arina et al., A comprehensive approach to dark matter studies: exploration of simplified top-philic models, JHEP11 (2016) 111 [arXiv:1605.09242] [INSPIRE].
S. Kraml, U. Laa, K. Mawatari and K. Yamashita, Simplified dark matter models with a spin-2 mediator at the LHC, Eur. Phys. J.C 77 (2017) 326 [arXiv:1701.07008] [INSPIRE].
N.F. Bell, G. Busoni and I.W. Sanderson, Self-consistent Dark Matter Simplified Models with an s-channel scalar mediator, JCAP03 (2017) 015 [arXiv:1612.03475] [INSPIRE].
N.F. Bell, G. Busoni and I.W. Sanderson, Two Higgs Doublet Dark Matter Portal, JCAP01 (2018) 015 [arXiv:1710.10764] [INSPIRE].
Y. Afik et al., \( DM+b\overline{b} \)simulations with DMSimp: an update, in Dark Matter at the LHC 2018: Experimental and theoretical workshop (DM@LHC 2018) Heidelberg, Germany, April 3–6, 2018, 2018, arXiv:1811.08002 [INSPIRE].
H.-S. Shao and Y.-J. Zhang, Feynman Rules for the Rational Part of One-loop QCD Corrections in the MSSM, JHEP06 (2012) 112 [arXiv:1205.1273] [INSPIRE].
T. Fritzsche, T. Hahn, S. Heinemeyer, F. von der Pahlen, H. Rzehak and C. Schappacher, The Implementation of the Renormalized Complex MSSM in FeynArts and FormCalc, Comput. Phys. Commun.185 (2014) 1529 [arXiv:1309.1692] [INSPIRE].
T. Hahn, S. Heinemeyer, F. von der Pahlen, H. Rzehak and C. Schappacher, Renormalization of the Complex MSSM in FeynArts/FormCalc, Nucl. Part. Phys. Proc.267-269 (2015) 158 [INSPIRE].
J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP07 (2002) 012 [hep-ph/0201195] [INSPIRE].
G. Passarino, Peaks and cusps: anomalous thresholds and LHC physics, arXiv:1807.00503 [INSPIRE].
NNPDF collaboration, Parton distributions for the LHC Run II, JHEP04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev.D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].
ATLAS collaboration, Measurement of the cross-section for producing a W boson in association with a single top quark in pp collisions at \( \sqrt{s} \) = 13 TeV with ATLAS, JHEP01 (2018) 063 [arXiv:1612.07231] [INSPIRE].
CMS collaboration, Observation of the associated production of a single top quark and a W boson in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Rev. Lett.112 (2014) 231802 [arXiv:1401.2942] [INSPIRE].
S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP07 (2008) 029 [arXiv:0805.3067] [INSPIRE].
S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations, JHEP04 (2007) 081 [hep-ph/0702198] [INSPIRE].
A.S. Belyaev, E.E. Boos and L.V. Dudko, Single top quark at future hadron colliders: Complete signal and background study, Phys. Rev.D 59 (1999) 075001 [hep-ph/9806332] [INSPIRE].
T.M.P. Tait, The tW −mode of single top production, Phys. Rev.D 61 (1999) 034001 [hep-ph/9909352] [INSPIRE].
S. Zhu, Next-to-leading order QCD corrections to bg → tW −at CERN large hadron collider, Phys. Lett.B 524 (2002) 283 [Erratum ibid.B 537 (2002) 351] [hep-ph/0109269] [INSPIRE].
E.L. Berger, T. Han, J. Jiang and T. Plehn, Associated production of a top quark and a charged Higgs boson, Phys. Rev.D 71 (2005) 115012 [hep-ph/0312286] [INSPIRE].
J.M. Campbell and F. Tramontano, Next-to-leading order corrections to Wt production and decay, Nucl. Phys.B 726 (2005) 109 [hep-ph/0506289] [INSPIRE].
T.N. Dao, W. Hollik and D.N. Le, W ∓H ±production and CP asymmetry at the LHC, Phys. Rev.D 83 (2011) 075003 [arXiv:1011.4820] [INSPIRE].
C.D. White, S. Frixione, E. Laenen and F. Maltoni, Isolating Wt production at the LHC, JHEP11 (2009) 074 [arXiv:0908.0631] [INSPIRE].
C. Weydert et al., Charged Higgs boson production in association with a top quark in MC@NLO, Eur. Phys. J.C 67 (2010) 617 [arXiv:0912.3430] [INSPIRE].
E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J.C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE].
J. Alwall, C. Duhr, B. Fuks, O. Mattelaer, D.G. Öztürk and C.-H. Shen, Computing decay rates for new physics theories with FeynRules and MadGraph 5 aMC@NLO, Comput. Phys. Commun.197 (2015) 312 [arXiv:1402.1178] [INSPIRE].
O. Mattelaer, On the maximal use of Monte Carlo samples: re-weighting events at NLO accuracy, Eur. Phys. J.C 76 (2016) 674 [arXiv:1607.00763] [INSPIRE].
S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP11 (2007) 070 [arXiv:0709.2092] [INSPIRE].
G. Corcella et al., HERWIG 6: An event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP01 (2001) 010 [hep-ph/0011363] [INSPIRE].
M. Fairbairn, A.C. Kraan, D.A. Milstead, T. Sjöstrand, P.Z. Skands and T. Sloan, Stable Massive Particles at Colliders, Phys. Rept.438 (2007) 1 [hep-ph/0611040] [INSPIRE].
N. Desai and P.Z. Skands, Supersymmetry and Generic BSM Models in PYTHIA 8, Eur. Phys. J.C 72 (2012) 2238 [arXiv:1109.5852] [INSPIRE].
T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-k tjet clustering algorithm, JHEP04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
CMS collaboration, Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV, Phys. Rev.D 96 (2017) 032003 [arXiv:1704.07781] [INSPIRE].
A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e +e −→ 4 fermions + γ, Nucl. Phys.B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].
A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e +e −→ 4 fermion processes: Technical details and further results, Nucl. Phys.B 724 (2005) 247 [Erratum ibid.B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1907.04898
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Frixione, S., Fuks, B., Hirschi, V. et al. Automated simulations beyond the Standard Model: supersymmetry. J. High Energ. Phys. 2019, 8 (2019). https://doi.org/10.1007/JHEP12(2019)008
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2019)008