Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Left-handed Z′ and Z FCNC quark couplings facing new b + μ data

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In view of the recent improved data on B s,d μ + μ and B d K * μ + μ we revisit two simple New Physics (NP) scenarios analyzed by us last year in which new FCNC currents in b + μ transitions are mediated either entirely by a neutral heavy gauge boson Z with purely left-handed complex couplings \( \Delta_L^{qb}\left( {{Z^{\prime }}} \right)\left( {q=d,s} \right) \) and real couplings to muons \( \Delta_A^{{\mu \overline{\mu}}}\left( {{Z^{\prime }}} \right) \) and \( \Delta_V^{{\mu \overline{\mu}}}\left( {Z\prime } \right) \) or the SM Z boson with left-handed complex couplings \( \Delta_L^{qb }(Z) \). We demonstrate how the reduced couplings, the couplings in question divided by M Z′ or M Z, can be determined by future ΔF = 2 and b + μ observables up to sign ambiguities. The latter do not affect the correlations between various observables that can test these NP scenarios. We present the results as functions of \( {C_{{{B_q}}}}={{{\varDelta Mq}} \left/ {{{{{\left( {\varDelta Mq} \right)}}_{\mathrm{SM}}}}} \right.},{S_{{\psi \phi }}} \) and \( {S_{{\psi {K_S}}}} \) which should be precisely determined in this decade. We calculate the violation of the CMFV relation between \( \mathcal{B}\left( {{B_{s,d }}\to {\mu^{+}}{\mu^{-}}} \right) \) and ΔM s,d in these scenarios. We find that the data on B s,d μ + μ from CMS and LHCb can be reproduced in both scenarios but in the case of Z, ΔM s and S ψϕ have to be very close to their SM values. As far as B d K * μ + μ anomalies are concerned the Z′ scenario can significantly soften these anomalies while the Z boson fails badly because of the small vector coupling to muons. We also point out that recent proposals of explaining these anomalies with the help of a real Wilson coefficient \( C_9^{\mathrm{NP}} \) implies uniquely an enhancement of ΔM s with respect to its SM value, while a complex \( C_9^{\mathrm{NP}} \) allows for both enhancement and suppression of ΔM s and simultaneously novel CP-violating effects. Correlations between b + μ and \( b\to s\nu \overline{\nu} \) observables in these scenarios are emphasized. We also discuss briefly scenarios in which the Z′ boson has right-handed FCNC couplings. In this context we point out a number of correlations between angular observables measured in B d K * μ + μ that arise in the absence of new CP-violating phases in scenarios with only left-handed or right-handed couplings or scenarios in which left-handed and right-handed couplings are equal to each other or differ by sign.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Buras and J. Girrbach, Towards the Identification of New Physics through Quark Flavour Violating Processes, arXiv:1306.3775 [INSPIRE].

  2. A. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].

    Article  ADS  Google Scholar 

  3. A.J. Buras, Minimal flavor violation, Acta Phys. Polon. B 34 (2003) 5615 [hep-ph/0310208] [INSPIRE].

    ADS  Google Scholar 

  4. R.S. Chivukula and H. Georgi, Composite Technicolor Standard Model, Phys. Lett. B 188 (1987) 99 [INSPIRE].

    Article  ADS  Google Scholar 

  5. L. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].

    Article  ADS  Google Scholar 

  6. G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A.L. Kagan, G. Perez, T. Volansky and J. Zupan, General Minimal Flavor Violation, Phys. Rev. D 80 (2009) 076002 [arXiv:0903.1794] [INSPIRE].

    ADS  Google Scholar 

  8. R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and Minimal Flavour Violation in Supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].

    Article  ADS  Google Scholar 

  9. R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181 [arXiv:1203.4218] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Crivellin, L. Hofer and U. Nierste, The MSSM with a Softly Broken U(2)3 Flavor Symmetry, PoS(EPS-HEP2011)145, [arXiv:1111.0246] [INSPIRE].

  11. A.J. Buras and J. Girrbach, On the Correlations between Flavour Observables in Minimal U(2)3 Models, JHEP 01 (2013) 007 [arXiv:1206.3878] [INSPIRE].

    Article  ADS  Google Scholar 

  12. W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and Phenomenology of FCNC and CPV Effects in SUSY Theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. A.J. Buras, F. De Fazio, J. Girrbach and M.V. Carlucci, The Anatomy of Quark Flavour Observables in 331 Models in the Flavour Precision Era, JHEP 02 (2013) 023 [arXiv:1211.1237] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A.J. Buras, F. De Fazio and J. Girrbach, The Anatomy of Zand Z with Flavour Changing Neutral Currents in the Flavour Precision Era, JHEP 02 (2013) 116 [arXiv:1211.1896] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. A.J. Buras, J. Girrbach and R. Ziegler, Particle-Antiparticle Mixing, CP-violation and Rare K and B Decays in a Minimal Theory of Fermion Masses, JHEP 04 (2013) 168 [arXiv:1301.5498] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A.J. Buras, R. Fleischer, J. Girrbach and R. Knegjens, Probing New Physics with the B s μ + μ Time-Dependent Rate, JHEP 1307 (2013) 77 [arXiv:1303.3820] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A.J. Buras, F. De Fazio, J. Girrbach, R. Knegjens and M. Nagai, The Anatomy of Neutral Scalars with FCNCs in the Flavour Precision Era, JHEP 06 (2013) 111 [arXiv:1303.3723] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. P. Langacker, The Physics of Heavy Z Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].

    Article  ADS  Google Scholar 

  19. V. Barger et al., bs Transitions in Family-dependent U(1) Models, JHEP 12 (2009) 048 [arXiv:0906.3745] [INSPIRE].

    Article  ADS  Google Scholar 

  20. P.J. Fox, J. Liu, D. Tucker-Smith and N. Weiner, An Effective Z’, Phys. Rev. D 84 (2011) 115006 [arXiv:1104.4127] [INSPIRE].

    ADS  Google Scholar 

  21. W. Altmannshofer, P. Paradisi and D.M. Straub, Model-Independent Constraints on New Physics in bs Transitions, JHEP 04 (2012) 008 [arXiv:1111.1257] [INSPIRE].

    Article  ADS  Google Scholar 

  22. W. Altmannshofer and D.M. Straub, Cornering New Physics in bs Transitions, JHEP 08 (2012) 121 [arXiv:1206.0273] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Dighe and D. Ghosh, How large can the branching ratio of B s τ + τ be?, Phys. Rev. D 86 (2012) 054023 [arXiv:1207.1324] [INSPIRE].

    ADS  Google Scholar 

  24. S. Sun, D.B. Kaplan and A.E. Nelson, Little flavor: a model of weak-scale flavor physics, Phys. Rev. D 87 (2013) 125036 [arXiv:1303.1811] [INSPIRE].

    ADS  Google Scholar 

  25. A.J. Buras, Relations between ΔM s,d and B s,d μ + μ in models with minimal flavor violation, Phys. Lett. B 566 (2003) 115 [hep-ph/0303060] [INSPIRE].

    Article  ADS  Google Scholar 

  26. W. Altmannshofer and D.M. Straub, New physics in BK * μμ?, arXiv:1308.1501 [INSPIRE].

  27. R. Gauld, F. Goertz and U. Haisch, On minimal Zexplanations of the BK * μ + μ anomaly, arXiv:1308.1959 [INSPIRE].

  28. LHCb collaboration, Measurement of the \( B_s^0\to {\mu^{+}}{\mu^{-}} \) branching fraction and search for B 0μ + μ decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024] [INSPIRE].

    Article  Google Scholar 

  29. CMS collaboration, Measurement of the B s μμ branching fraction and search for B 0μμ with the CMS Experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].

    Article  ADS  Google Scholar 

  30. CMS and LHCb collaborations, Combination of results on the rare decays \( B_{(s)}^0\to {\mu^{+}}{\mu^{-}} \) from the CMS and LHCb experiments, CMS-PAS-BPH-13-007 (2013).

  31. LHCb collaboration, Differential branching fraction and angular analysis of the decay B 0K *0 μ + μ , JHEP 08 (2013) 131 [arXiv:1304.6325] [INSPIRE].

    Google Scholar 

  32. LHCb collaboration, Measurement of form-factor independent observables in the decay B 0K *0 μ + μ , Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].

    Article  Google Scholar 

  33. CMS collaboration, Angular analysis and branching fraction measurement of the decay B 0K *0 μ + μ , Phys. Lett. B 727 (2013) 77 [arXiv:1308.3409] [INSPIRE].

    ADS  Google Scholar 

  34. S. Descotes-Genon, J. Matias and J. Virto, Understanding the BK * μ + μ Anomaly, Phys. Rev. D 88 (2013) 074002 [arXiv:1307.5683] [INSPIRE].

    ADS  Google Scholar 

  35. A. Khodjamirian, T. Mannel, A. Pivovarov and Y.-M. Wang, Charm-loop effect in BK (*) + and BK * γ, JHEP 09 (2010) 089 [arXiv:1006.4945] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. M. Beylich, G. Buchalla and T. Feldmann, Theory of BK (*) + decays at high q 2 : OPE and quark-hadron duality, Eur. Phys. J. C 71 (2011) 1635 [arXiv:1101.5118] [INSPIRE].

    Article  ADS  Google Scholar 

  37. J. Matias, On the S-wave pollution of BK * + observables, Phys. Rev. D 86 (2012) 094024 [arXiv:1209.1525] [INSPIRE].

    ADS  Google Scholar 

  38. S. Jäger and J. Martin Camalich, On BVℓℓ at small dilepton invariant mass, power corrections and new physics, JHEP 05 (2013) 043 [arXiv:1212.2263] [INSPIRE].

    Article  Google Scholar 

  39. D. Guadagnoli and G. Isidori, BR(B s μ + μ ) as an electroweak precision test, arXiv:1302.3909 [INSPIRE].

  40. A.J. Buras and J. Girrbach, Complete NLO QCD Corrections for Tree Level Delta F = 2 FCNC Processes, JHEP 03 (2012) 052 [arXiv:1201.1302] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  41. A.J. Buras, M. Jamin and P.H. Weisz, Leading and Next-to-leading QCD Corrections to ϵ Parameter and \( {B^0} - {{\overline{B}}^0} \) Mixing in the Presence of a Heavy Top Quark, Nucl. Phys. B 347 (1990)491 [INSPIRE].

    Article  ADS  Google Scholar 

  42. C. Bobeth, P. Gambino, M. Gorbahn and U. Haisch, Complete NNLO QCD analysis of \( \overline{B}\to {X_s}{\ell^{+}}{\ell^{-}} \) and higher order electroweak effects, JHEP 04 (2004) 071 [hep-ph/0312090] [INSPIRE].

    Article  ADS  Google Scholar 

  43. T. Huber, E. Lunghi, M. Misiak and D. Wyler, Electromagnetic logarithms in \( \overline{B}\to {X_s}{\ell^{+}}{\ell^{-}} \), Nucl. Phys. B 740 (2006) 105 [hep-ph/0512066] [INSPIRE].

    Article  ADS  Google Scholar 

  44. A.J. Buras and M. Münz, Effective Hamiltonian for BX s e + e beyond leading logarithms in the NDR and HV schemes, Phys. Rev. D 52 (1995) 186 [hep-ph/9501281] [INSPIRE].

    ADS  Google Scholar 

  45. C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and m t dependence of BR(BX s + ), Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220] [INSPIRE].

    Article  ADS  Google Scholar 

  46. C. Bobeth, M. Misiak and J. Urban, Matching conditions for bsγ and bs gluon in extensions of the standard model, Nucl. Phys. B 567 (2000) 153 [hep-ph/9904413] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A.J. Buras, L. Merlo and E. Stamou, The Impact of Flavour Changing Neutral Gauge Bosons on \( \overline{B}\to {X_s}\gamma \), JHEP 08 (2011) 124 [arXiv:1105.5146] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  48. K. De Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg, M. Merk et al., Probing New Physics via the \( B_s^0\to {\mu^{+}}{\mu^{-}} \) Effective Lifetime, Phys. Rev. Lett. 109 (2012) 041801 [arXiv:1204.1737] [INSPIRE].

    Article  ADS  Google Scholar 

  49. R. Fleischer, On Branching Ratios of B s Decays and the Search for New Physics in \( B_s^0\to {\mu^{+}}{\mu^{-}} \), Nucl. Phys. Proc. Suppl. 241-242 (2013) 135 [arXiv:1208.2843] [INSPIRE].

    Article  Google Scholar 

  50. A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the Standard Model prediction for BR(B s,d μ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].

    Article  ADS  Google Scholar 

  51. F. Beaujean, C. Bobeth, D. van Dyk and C. Wacker, Bayesian Fit of Exclusive \( b\to s\ell \overline{\ell} \) Decays: the Standard Model Operator Basis, JHEP 08 (2012) 030 [arXiv:1205.1838] [INSPIRE].

    Article  ADS  Google Scholar 

  52. C. Bobeth, G. Hiller and D. van Dyk, General Analysis of \( \overline{B}\to {{\overline{K}}^{{\left( * \right)}}}{\ell^{+}}{\ell^{-}} \) Decays at Low Recoil, Phys. Rev. D 87 (2013) 034016 [arXiv:1212.2321] [INSPIRE].

    ADS  Google Scholar 

  53. F. Beaujean, C. Bobeth and D. van Dyk, Comprehensive Bayesian Analysis of Rare (Semi)leptonic and Radiative B Decays, arXiv:1310.2478 [INSPIRE].

  54. R.R. Horgan, Z. Liu, S. Meinel and M. Wingate, Calculation of B 0K *0 μ + μ and \( B_s^0\to \phi {\mu^{+}}{\mu^{-}} \) observables using form factors from lattice QCD, arXiv:1310.3887 [INSPIRE].

  55. G. Colangelo et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408] [INSPIRE].

    Article  ADS  Google Scholar 

  56. T. Hurth, G. Isidori, J.F. Kamenik and F. Mescia, Constraints on New Physics in MFV models: a Model-independent analysis of ΔF = 1 processes, Nucl. Phys. B 808 (2009) 326 [arXiv:0807.5039] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  57. N. Carrasco et al., B-physics from Nf=2 tmQCD: the Standard Model and beyond, arXiv:1308.1851 [INSPIRE].

  58. J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].

    ADS  Google Scholar 

  59. A.J. Buras and J. Girrbach, Stringent Tests of Constrained Minimal Flavour Violation through ΔF = 2 Transitions, The European Physical Journal C 9 (73) 2013 [arXiv:1304.6835] [INSPIRE].

  60. W. Marciano and A. Sirlin, Constraint on Additional Neutral Gauge Bosons From Electroweak Radiative Corrections, Phys. Rev. D 35 (1987) 1672 [INSPIRE].

    ADS  Google Scholar 

  61. W. Altmannshofer, A.J. Buras, D.M. Straub and M. Wick, New strategies for New Physics search in \( B\to {K^{*}}\nu \overline{\nu} \) , \( B\to K\nu \overline{\nu} \) and \( B\to {X_s}\nu \overline{\nu} \) decays, JHEP 04 (2009) 022 [arXiv:0902.0160] [INSPIRE].

    Article  ADS  Google Scholar 

  62. Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-Hadron, C-Hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  63. LHCb collaboration, Measurement of CP violation and the \( B_s^0 \) meson decay width difference with \( B_s^0\to {J \left/ {{\psi {K^{+}}{K^{-}}}} \right.} \) and \( B_s^0\to {J \left/ {{\psi {\pi^{+}}{\pi^{-}}}} \right.} \) decays, Phys. Rev. D 87 (2013) 112010 [arXiv:1304.2600] [INSPIRE].

    Google Scholar 

  64. UTfit collaboration, M. Bona et al., Constraints on new physics from the quark mixing unitarity triangle, Phys. Rev. Lett. 97 (2006) 151803 [hep-ph/0605213] [INSPIRE].

    Article  Google Scholar 

  65. D.M. Straub, Constraints on new physics from rare (semi-)leptonic B decays, arXiv:1305.5704 [INSPIRE].

  66. W. Altmannshofer, The B s μ + μ and B d μ + μ Decays: Standard Model and Beyond, PoS(Beauty 2013)024 [arXiv:1306.0022] [INSPIRE].

  67. P. Colangelo, F. De Fazio, P. Santorelli and E. Scrimieri, Rare BK (*) neutrino anti-neutrino decays at B factories, Phys. Lett. B 395 (1997) 339 [hep-ph/9610297] [INSPIRE].

    Article  ADS  Google Scholar 

  68. G. Buchalla, G. Hiller and G. Isidori, Phenomenology of nonstandard Z couplings in exclusive semileptonic bs transitions, Phys. Rev. D 63 (2000) 014015 [hep-ph/0006136] [INSPIRE].

    ADS  Google Scholar 

  69. M. Blanke, A.J. Buras, B. Duling, S. Recksiegel and C. Tarantino, FCNC Processes in the Littlest Higgs Model with T-Parity: a 2009 Look, Acta Phys. Polon. B 41 (2010) 657 [arXiv:0906.5454] [INSPIRE].

    Google Scholar 

  70. O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations, Phys. Rev. Lett. 109 (2012) 241802 [arXiv:1209.1101] [INSPIRE].

    Article  ADS  Google Scholar 

  71. A.J. Buras et al., Patterns of Flavour Violation in the Presence of a Fourth Generation of Quarks and Leptons, JHEP 09 (2010) 106 [arXiv:1002.2126] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  72. G.W.S. Hou, Enhanced B d μ + μ Decay: what if?, arXiv:1307.2448 [INSPIRE].

  73. M. Blanke, A.J. Buras, B. Duling, K. Gemmler and S. Gori, Rare K and B Decays in a Warped Extra Dimension with Custodial Protection, JHEP 03 (2009) 108 [arXiv:0812.3803] [INSPIRE].

    Article  ADS  Google Scholar 

  74. W. Altmannshofer et al., Symmetries and Asymmetries of BK * μ + μ Decays in the Standard Model and Beyond, JHEP 01 (2009) 019 [arXiv:0811.1214] [INSPIRE].

    Article  ADS  Google Scholar 

  75. S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, Optimizing the basis of BK * + observables in the full kinematic range, JHEP 05 (2013) 137 [arXiv:1303.5794] [INSPIRE].

    Article  ADS  Google Scholar 

  76. C. Hambrock, G. Hiller, S. Schacht and R. Zwicky, BK * Form Factors from Flavor Data to QCD and Back, arXiv:1308.4379 [INSPIRE].

  77. C. Bouchard, G.P. Lepage, C. Monahan, H. Na and J. Shigemitsu, Standard Model predictions for BKll with form factors from lattice QCD, Phys. Rev. Lett. 111 (2013) 162002 [arXiv:1306.0434] [INSPIRE].

    Article  ADS  Google Scholar 

  78. C. Bouchard, G.P. Lepage, C. Monahan, H. Na and J. Shigemitsu, Rare decay BKll form factors from lattice QCD, Phys. Rev. D 88 (2013) 054509 [arXiv:1306.2384] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Girrbach.

Additional information

ArXiv ePrint: 1309.2466

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buras, A.J., Girrbach, J. Left-handed Z′ and Z FCNC quark couplings facing new b + μ data. J. High Energ. Phys. 2013, 9 (2013). https://doi.org/10.1007/JHEP12(2013)009

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)009

Keywords

Navigation