Abstract
Direct detection of dark matter (DM) requires an interaction of dark matter particles with nucleons. The same interaction can lead to dark matter pair production at a hadron collider, and with the addition of initial state radiation this may lead to mono-jet signals. Mono-jet searches at the Tevatron can thus place limits on DM direct detection rates. We study these bounds both in the case where there is a contact interaction between DM and the standard model and where there is a mediator kinematically accessible at the Tevatron. We find that in many cases the Tevatron provides the current best limit, particularly for light dark matter, below ∼5 GeV, a and for spin dependent interactions. Non-standard dark matter candidates are also constrained. The introduction of a light mediator significantly weakens the collider bound. A direct detection discovery that is in apparent conflict with mono-jet limits will thus point to a new light state coupling the standard model to the dark sector. Mono-jet searches with more luminosity and including the spectrum shape in the analysis can improve the constraints on DM-nucleon scattering cross section.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A. Birkedal, K. Matchev and M. Perelstein, Dark matter at colliders: A model-independent approach, Phys. Rev. D 70 (2004) 077701 [hep-ph/0403004] [SPIRES].
K. Burkett, E. James, P.-H. Beauchemin, P. Savard, Search for Extra Dimensions in Jets+Missing Energy in RunII, http://www-cdf.fnal.gov/physics/exotic/r2a/20070322.monojet/public/ykk.html.
The CDMS-II collaboration, Z. Ahmed et al., Dark Matter Search Results from the CDMS II Experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].
XENON collaboration, J. Angle et al., First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [SPIRES].
XENON100 collaboration, E. Aprile et al., First Dark Matter Results from the XENON100 Experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [SPIRES].
DAMA collaboration, R. Bernabei et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741] [SPIRES].
CoGeNT collaboration, C.E. Aalseth et al., Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector, arXiv:1002.4703 [SPIRES].
X.-t. Song, Anticharm and charm in the nucleon, Phys. Rev. D 65 (2002) 114022 [hep-ph/0111129] [SPIRES].
A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].
F. Petriello and K.M. Zurek, DAMA and WIMP dark matter, JHEP 09 (2008) 047 [arXiv:0806.3989] [SPIRES].
A. Bottino, F. Donato, N. Fornengo and S. Scopel, Relic neutralinos and the two dark matter candidate events of the CDMS II experiment, Phys. Rev. D 81 (2010) 107302 [arXiv:0912.4025] [SPIRES].
E. Kuflik, A. Pierce and K.M. Zurek, Light Neutralinos with Large Scattering Cross Sections in the Minimal Supersymmetric Standard Model, Phys. Rev. D 81 (2010) 111701 [arXiv:1003. 0682] [SPIRES].
D. Feldman, Z. Liu and P. Nath, Low Mass Neutralino Dark Matter in the MSSM with Constraints from B s → μ + μ − and Higgs Search Limits, Phys. Rev. D 81 (2010) 117701 [arXiv:1003.0437] [SPIRES].
P.W. Graham, R. Harnik, S. Rajendran and P. Saraswat, Exothermic Dark Matter, Phys. Rev. D 82 (2010) 063512 [arXiv:1004.0937] [SPIRES].
R. Essig, J. Kaplan, P. Schuster and N. Toro, On the Origin of Light Dark Matter Species, arXiv:1004.0691 [SPIRES].
D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [SPIRES].
B. Feldstein, A.L. Fitzpatrick and E. Katz, Form Factor Dark Matter, JCAP 01 (2010) 020 [arXiv:0908.2991] [SPIRES].
S. Chang, A. Pierce and N. Weiner, Momentum Dependent Dark Matter Scattering, JCAP 01 (2010) 006 [arXiv:0908.3192] [SPIRES].
Y. Bai and P.J. Fox, Resonant Dark Matter, JHEP 11 (2009) 052 [arXiv:0909.2900] [SPIRES].
H.-Y. Cheng, Low-energy interactions of scalar and pseudoscalar Higgs bosons with baryons, Phys. Lett. B 219 (1989) 347 [SPIRES].
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs2.1, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [SPIRES].
V. Barger, W.-Y. Keung and G. Shaughnessy, Spin Dependence of Dark Matter Scattering, Phys. Rev. D 78 (2008) 056007 [arXiv:0806.1962] [SPIRES].
Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].
P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra, A Classification of Dark Matter Candidates with Primarily Spin-Dependent Interactions with Matter, arXiv:1003.1912 [SPIRES].
COUPP collaboration, E. Behnke et al., Improved Spin-Dependent WIMP Limits from a Bubble Chamber, Science 319 (2008) 933 [arXiv:0804.2886] [SPIRES].
S. Archambault et al., Dark Matter Spin-Dependent Limits for WIMP Interactions on 19-F by PICA SSO, Phys. Lett. B 682 (2009) 185 [arXiv:0907.0307] [SPIRES].
ZEPLIN-III collaboration, V.N. Lebedenko et al., Limits on the spin-dependent WIMP-nucleon cross-sections from the first science run of the ZEPLIN-III experiment, Phys. Rev. Lett. 103 (2009) 151302 [arXiv:0901.4348] [SPIRES].
S. Chang, G.D. Kribs, D. Tucker-Smith and N. Weiner, Inelastic Dark Matter in Light of DAMA/LIBRA, Phys. Rev. D 79 (2009) 043513 [arXiv:0807.2250] [SPIRES].
S. Chang, A. Pierce and N. Weiner, Using the Energy Spectrum at DAMA/LIBRA to Probe Light Dark Matter, Phys. Rev. D 79 (2009) 115011 [arXiv:0808.0196] [SPIRES].
J. Kopp, T. Schwetz and J. Zupan, Global interpretation of direct Dark Matter searches after CDMS-II results, JCAP 02 (2010) 014 [arXiv:0912.4264] [SPIRES].
R.F. Lang and N. Weiner, Peaked Signals from Dark Matter Velocity Structures in Direct Detection Experiments, JCAP 06 (2010) 032 [arXiv:1003.3664] [SPIRES].
M. Beltrán, D. Hooper, E.W. Kolb, Z.A.C. Krusberg and T.M.P. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [SPIRES].
N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].
J. Conway, Pretty good simulation of high energy collisions, http://www.physics.ucdavis.edu/∼conway/research/software/pgs/pgs4-general.htm.
J. Goodman et al., Constraints on Light Majorana Dark Matter from Colliders, arXiv:1005.1286 [SPIRES].
D. Hooper, TASI 2008 Lectures on Dark Matter, arXiv:0901.4090 [SPIRES].
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Bai, Y., Fox, P.J. & Harnik, R. The Tevatron at the frontier of dark matter direct detection. J. High Energ. Phys. 2010, 48 (2010). https://doi.org/10.1007/JHEP12(2010)048
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2010)048