Abstract
We discuss N=1 supergravity inflationary models based on two chiral multi-plets, the inflaton and the goldstino superfield. Using superconformal methods for these models, we propose to replace the unconstrained chiral goldstino multiplet by the nilpotent one associated with non-linearly realized supersymmetry of the Volkov-Akulov type. In the new cosmological models, the sgoldstino is proportional to a bilinear combination of fermionic goldstinos. It does not acquire any vev, does nor require stabilization, and does not affect the cosmological evolution. We explain a universal relation of these new models to κ-symmetric super-Dp-brane actions. This modification significantly simplifies a broad class of the presently existing inflationary models based on supergravity and string theory, including the simplest versions of chaotic inflation, the Starobinsky model, a broad class of cosmological attractors, the Higgs inflation, and much more. In particular, this is a step towards a fully supersymmetric version of the string theory axion monodromy inflation. The new construction serves as a simple and manifestly supersymmetric uplifting tool in the KKLT-type string theory landscape.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
S. Cecotti, Higher derivative supergravity is equivalent to standard supergravity coupled to matter. 1, Phys. Lett. B 190 (1987) 86 [INSPIRE].
R. Kallosh and A. Linde, Superconformal generalizations of the Starobinsky model, JCAP 06 (2013) 028 [arXiv:1306.3214] [INSPIRE].
S. Ferrara, R. Kallosh and A. Van Proeyen, On the supersymmetric completion of R + R 2 gravity and cosmology, JHEP 11 (2013) 134 [arXiv:1309.4052] [INSPIRE].
M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity, Phys. Rev. Lett. 85 (2000) 3572 [hep-ph/0004243] [INSPIRE].
R. Kallosh and A. Linde, New models of chaotic inflation in supergravity, JCAP 11 (2010) 011 [arXiv:1008.3375] [INSPIRE].
R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].
R. Kallosh, A. Linde and B. Vercnocke, Natural inflation in supergravity and beyond, Phys. Rev. D 90 (2014) 041303 [arXiv:1404.6244] [INSPIRE].
R. Kallosh, A. Linde and A. Westphal, Chaotic inflation in supergravity after Planck and BICEP2, Phys. Rev. D 90 (2014) 023534 [arXiv:1405.0270] [INSPIRE].
R. Kallosh and A. Linde, Superconformal generalization of the chaotic inflation model \( \frac{\lambda }{4}{\phi}^4 - \frac{\xi }{2}\ {\phi}^2R \), JCAP 06 (2013) 027 [arXiv:1306.3211] [INSPIRE].
R. Kallosh and A. Linde, Universality class in conformal inflation, JCAP 07 (2013) 002 [arXiv:1306.5220] [INSPIRE].
R. Kallosh, A. Linde and D. Roest, Universal attractor for inflation at strong coupling, Phys. Rev. Lett. 112 (2014) 011303 [arXiv:1310.3950] [INSPIRE].
R. Kallosh, A. Linde and D. Roest, Superconformal inflationary α-attractors, JHEP 11 (2013) 198 [arXiv:1311.0472] [INSPIRE].
S. Cecotti and R. Kallosh, Cosmological attractor models and higher curvature supergravity, JHEP 05 (2014) 114 [arXiv:1403.2932] [INSPIRE].
R. Kallosh, A. Linde and D. Roest, Large field inflation and double α-attractors, JHEP 08 (2014) 052 [arXiv:1405.3646] [INSPIRE].
L. Álvarez-Gaumé, C. Gomez and R. Jimenez, Minimal inflation, Phys. Lett. B 690 (2010) 68 [arXiv:1001.0010] [INSPIRE].
L. Álvarez-Gaumé, C. Gomez and R. Jimenez, A minimal inflation scenario, JCAP 03 (2011) 027 [arXiv:1101.4948] [INSPIRE].
A. Achucarro, S. Mooij, P. Ortiz and M. Postma, Sgoldstino inflation, JCAP 08 (2012) 013 [arXiv:1203.1907] [INSPIRE].
A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].
A.A. Starobinsky, The perturbation spectrum evolving from a nonsingular initially de-Sitter cosmology and the microwave background anisotropy, Sov. Astron. Lett. 9 (1983) 302 [INSPIRE].
B. Whitt, Fourth order gravity as general relativity plus matter, Phys. Lett. B 145 (1984) 176 [INSPIRE].
A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].
A.D. Linde, Particle physics and inflationary cosmology, Contemp. Concepts Phys. 5 (1990) 1 [hep-th/0503203] [INSPIRE].
A.D. Linde, Inflationary cosmology, Lect. Notes Phys. 738 (2008) 1 [arXiv:0705.0164] [INSPIRE].
V. Demozzi, A. Linde and V. Mukhanov, Supercurvaton, JCAP 04 (2011) 013 [arXiv:1012.0549] [INSPIRE].
S. Deser and B. Zumino, Broken supersymmetry and supergravity, Phys. Rev. Lett. 38 (1977) 1433 [INSPIRE].
D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16 (1972) 438 [Pisma Zh. Eksp. Teor. Fiz. 16 (1972) 621] [INSPIRE].
D. Volkov and V. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].
M. Roček, Linearizing the Volkov-Akulov model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].
E.A. Ivanov and A.A. Kapustnikov, General relationship between linear and nonlinear realizations of supersymmetry, J. Phys. A 11 (1978) 2375 [INSPIRE].
U. Lindström and M. Roček, Constrained local superfields, Phys. Rev. D 19 (1979) 2300 [INSPIRE].
R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear realization of supersymmetry algebra from supersymmetric constraint, Phys. Lett. B 220 (1989) 569 [INSPIRE].
Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].
I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, Non-linear MSSM, Nucl. Phys. B 841 (2010) 157 [arXiv:1006.1662] [INSPIRE].
S.M. Kuzenko and S.J. Tyler, Relating the Komargodski-Seiberg and Akulov-Volkov actions: exact nonlinear field redefinition, Phys. Lett. B 698 (2011) 319 [arXiv:1009.3298] [INSPIRE].
I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].
S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, Jordan frame supergravity and inflation in NMSSM, Phys. Rev. D 82 (2010) 045003 [arXiv:1004.0712] [INSPIRE].
S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, Superconformal symmetry, NMSSM and inflation, Phys. Rev. D 83 (2011) 025008 [arXiv:1008.2942] [INSPIRE].
M. Yamaguchi and J. Yokoyama, New inflation in supergravity with a chaotic initial condition, Phys. Rev. D 63 (2001) 043506 [hep-ph/0007021] [INSPIRE].
M. Yamaguchi, Natural double inflation in supergravity, Phys. Rev. D 64 (2001) 063502 [hep-ph/0103045] [INSPIRE].
M. Kawasaki and M. Yamaguchi, A supersymmetric topological inflation model, Phys. Rev. D 65 (2002) 103518 [hep-ph/0112093] [INSPIRE].
M. Yamaguchi and J. Yokoyama, Chaotic hybrid new inflation in supergravity with a running spectral index, Phys. Rev. D 68 (2003) 123520 [hep-ph/0307373] [INSPIRE].
K. Kadota and M. Yamaguchi, D-term chaotic inflation in supergravity, Phys. Rev. D 76 (2007) 103522 [arXiv:0706.2676] [INSPIRE].
S.C. Davis and M. Postma, SUGRA chaotic inflation and moduli stabilisation, JCAP 03 (2008) 015 [arXiv:0801.4696] [INSPIRE].
F. Takahashi, Linear inflation from running kinetic term in supergravity, Phys. Lett. B 693 (2010) 140 [arXiv:1006.2801] [INSPIRE].
K. Nakayama and F. Takahashi, Running kinetic inflation, JCAP 11 (2010) 009 [arXiv:1008.2956] [INSPIRE].
M. Yamaguchi, Supergravity based inflation models: a review, Class. Quant. Grav. 28 (2011) 103001 [arXiv:1101.2488] [INSPIRE].
K. Harigaya and T.T. Yanagida, Discovery of large scale tensor mode and chaotic inflation in supergravity, Phys. Lett. B 734 (2014) 13 [arXiv:1403.4729] [INSPIRE].
K. Nakayama, F. Takahashi and T.T. Yanagida, Polynomial chaotic inflation in supergravity revisited, Phys. Lett. B 737 (2014) 151 [arXiv:1407.7082] [INSPIRE].
J. Ellis, M.A.G. Garcia, D.V. Nanopoulos and K.A. Olive, A no-scale inflationary model to fit them all, JCAP 08 (2014) 044 [arXiv:1405.0271] [INSPIRE].
J. Ellis, M.A.G. García, D.V. Nanopoulos and K.A. Olive, Resurrecting quadratic inflation in no-scale supergravity in light of BICEP2, JCAP 05 (2014) 037 [arXiv:1403.7518] [INSPIRE].
J. Ellis, D.V. Nanopoulos and K.A. Olive, Starobinsky-like inflationary models as avatars of no-scale supergravity, JCAP 10 (2013) 009 [arXiv:1307.3537] [INSPIRE].
J. Ellis, D.V. Nanopoulos and K.A. Olive, No-scale supergravity realization of the Starobinsky model of inflation, Phys. Rev. Lett. 111 (2013) 111301 [Erratum ibid. 111 (2013) 129902] [arXiv:1305.1247] [INSPIRE].
S. Cecotti, S. Ferrara, M. Porrati and S. Sabharwal, New minimal higher derivative supergravity coupled to matter, Nucl. Phys. B 306 (1988) 160 [INSPIRE].
S. Ferrara, R. Kallosh, A. Linde and M. Porrati, Minimal supergravity models of inflation, Phys. Rev. D 88 (2013) 085038 [arXiv:1307.7696] [INSPIRE].
F. Farakos, A. Kehagias and A. Riotto, On the Starobinsky model of inflation from supergravity, Nucl. Phys. B 876 (2013) 187 [arXiv:1307.1137] [INSPIRE].
S. Ferrara and M. Porrati, Minimal R + R 2 supergravity models of inflation coupled to matter, Phys. Lett. B 737 (2014) 135 [arXiv:1407.6164] [INSPIRE].
M. Cederwall, A. von Gussich, B.E.W. Nilsson and A. Westerberg, The Dirichlet super three-brane in ten-dimensional type IIB supergravity, Nucl. Phys. B 490 (1997) 163 [hep-th/9610148] [INSPIRE].
M. Cederwall, A. von Gussich, B.E.W. Nilsson, P. Sundell and A. Westerberg, The Dirichlet super p-branes in ten-dimensional type IIA and IIB supergravity, Nucl. Phys. B 490 (1997) 179 [hep-th/9611159] [INSPIRE].
E. Bergshoeff and P.K. Townsend, Super D-branes, Nucl. Phys. B 490 (1997) 145 [hep-th/9611173] [INSPIRE].
M. Aganagic, C. Popescu and J.H. Schwarz, Gauge invariant and gauge fixed D-brane actions, Nucl. Phys. B 495 (1997) 99 [hep-th/9612080] [INSPIRE].
M. Aganagic, C. Popescu and J.H. Schwarz, D-brane actions with local kappa symmetry, Phys. Lett. B 393 (1997) 311 [hep-th/9610249] [INSPIRE].
E. Bergshoeff, R. Kallosh, T. Ortín and G. Papadopoulos, Kappa symmetry, supersymmetry and intersecting branes, Nucl. Phys. B 502 (1997) 149 [hep-th/9705040] [INSPIRE].
R. Kallosh, Volkov-Akulov theory and D-branes, Lect. Notes Phys. 509 (1998) 49 [hep-th/9705118] [INSPIRE].
E. Bergshoeff, F. Coomans, R. Kallosh, C.S. Shahbazi and A. Van Proeyen, Dirac-Born-Infeld-Volkov-Akulov and deformation of supersymmetry, JHEP 08 (2013) 100 [arXiv:1303.5662] [INSPIRE].
M. Roček and A.A. Tseytlin, Partial breaking of global D =4 supersymmetry, constrained superfields and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-th/9811232] [INSPIRE].
R. Kallosh, A. Linde, K.A. Olive and T. Rube, Chaotic inflation and supersymmetry breaking, Phys. Rev. D 84 (2011) 083519 [arXiv:1106.6025] [INSPIRE].
R. Kallosh and A.D. Linde, O’KKLT, JHEP 02 (2007) 002 [hep-th/0611183] [INSPIRE].
S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [INSPIRE].
J. Polonyi, Generalization of the massive scalar multiplet coupling to the supergravity, KFKI-77-93 (1978).
P. Binetruy and G.R. Dvali, D term inflation, Phys. Lett. B 388 (1996) 241 [hep-ph/9606342] [INSPIRE].
P. Binetruy, G. Dvali, R. Kallosh and A. Van Proeyen, Fayet-Iliopoulos terms in supergravity and cosmology, Class. Quant. Grav. 21 (2004) 3137 [hep-th/0402046] [INSPIRE].
W. Buchmüller, V. Domcke and C. Wieck, No-scale D-term inflation with stabilized moduli, Phys. Lett. B 730 (2014) 155 [arXiv:1309.3122] [INSPIRE].
W. Buchmüller, V. Domcke and K. Schmitz, The chaotic regime of D-term inflation, arXiv:1406.6300 [INSPIRE].
C.P. Burgess, R. Kallosh and F. Quevedo, De Sitter string vacua from supersymmetric D terms, JHEP 10 (2003) 056 [hep-th/0309187] [INSPIRE].
R. Kallosh, L. Kofman, A.D. Linde and A. Van Proeyen, Superconformal symmetry, supergravity and cosmology, Class. Quant. Grav. 17 (2000) 4269 [Erratum ibid. 21 (2004) 5017] [hep-th/0006179] [INSPIRE].
E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills theories with local supersymmetry: lagrangian, transformation laws and super-Higgs effect, Nucl. Phys. B 212 (1983) 413 [INSPIRE].
D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).
R. Kallosh, Planck 2013 and superconformal symmetry, arXiv:1402.0527 [INSPIRE].
I. Antoniadis, E. Dudas and A. Sagnotti, Brane supersymmetry breaking, Phys. Lett. B 464 (1999) 38 [hep-th/9908023] [INSPIRE].
C. Angelantonj, I. Antoniadis, G. D’Appollonio, E. Dudas and A. Sagnotti, Type I vacua with brane supersymmetry breaking, Nucl. Phys. B 572 (2000) 36 [hep-th/9911081] [INSPIRE].
E. Dudas, N. Kitazawa and A. Sagnotti, On climbing scalars in string theory, Phys. Lett. B 694 (2010) 80 [arXiv:1009.0874] [INSPIRE].
E. Bergshoeff, R. Kallosh, T. Ortín, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [INSPIRE].
S. Cecotti and S. Ferrara, Supersymmetric Born-Infeld lagrangians, Phys. Lett. B 187 (1987) 335 [INSPIRE].
J. Bagger and A. Galperin, A new Goldstone multiplet for partially broken supersymmetry, Phys. Rev. D 55 (1997) 1091 [hep-th/9608177] [INSPIRE].
L. McAllister, E. Silverstein, A. Westphal and T. Wrase, The powers of monodromy, JHEP 09 (2014) 123 [arXiv:1405.3652] [INSPIRE].
S.V. Ketov and T. Terada, Inflation in supergravity with a single chiral superfield, Phys. Lett. B 736 (2014) 272 [arXiv:1406.0252] [INSPIRE].
R. Kallosh, On inflation in string theory, Lect. Notes Phys. 738 (2008) 119 [hep-th/0702059] [INSPIRE].
R. Kallosh, N. Sivanandam and M. Soroush, Axion inflation and gravity waves in string theory, Phys. Rev. D 77 (2008) 043501 [arXiv:0710.3429] [INSPIRE].
O. Lebedev, H.P. Nilles and M. Ratz, De Sitter vacua from matter superpotentials, Phys. Lett. B 636 (2006) 126 [hep-th/0603047] [INSPIRE].
M. Dine, R. Kitano, A. Morisse and Y. Shirman, Moduli decays and gravitinos, Phys. Rev. D 73 (2006) 123518 [hep-ph/0604140] [INSPIRE].
R. Kitano, Gravitational gauge mediation, Phys. Lett. B 641 (2006) 203 [hep-ph/0607090] [INSPIRE].
S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [INSPIRE].
R. Kallosh, A. Linde, B. Vercnocke and T. Wrase, Analytic classes of metastable de Sitter vacua, JHEP 1410 (2014) 11 [arXiv:1406.4866] [INSPIRE].
E. Dudas, A. Linde, Y. Mambrini, A. Mustafayev and K.A. Olive, Strong moduli stabilization and phenomenology, Eur. Phys. J. C 73 (2013) 2268 [arXiv:1209.0499] [INSPIRE].
G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological problems for the Polonyi potential, Phys. Lett. B 131 (1983) 59 [INSPIRE].
A.S. Goncharov, A.D. Linde and M.I. Vysotsky, Cosmological problems for spontaneously broken supergravity, Phys. Lett. B 147 (1984) 279 [INSPIRE].
T. Banks, D.B. Kaplan and A.E. Nelson, Cosmological implications of dynamical supersymmetry breaking, Phys. Rev. D 49 (1994) 779 [hep-ph/9308292] [INSPIRE].
G.R. Dvali, Inflation versus the cosmological moduli problem, hep-ph/9503259 [INSPIRE].
M. Dine, L. Randall and S.D. Thomas, Supersymmetry breaking in the early universe, Phys. Rev. Lett. 75 (1995) 398 [hep-ph/9503303] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1408.4096
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Ferrara, S., Kallosh, R. & Linde, A. Cosmology with nilpotent superfields. J. High Energ. Phys. 2014, 143 (2014). https://doi.org/10.1007/JHEP10(2014)143
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2014)143