Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The fully differential hadronic production of a Higgs boson through bottom-quark fusion at NNLO

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The fully differential computation of the hadronic production cross section of a Higgs boson via bottom quarks is presented at NNLO in QCD. Several differential distributions with their corresponding scale uncertainties are presented for the 8 TeV LHC. This is the first application of the method of non-linear mappings for NNLO differential calculations at hadron colliders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Babu and S. Nandi, Natural fermion mass hierarchy and new signals for the Higgs boson, Phys. Rev. D 62 (2000) 033002 [hep-ph/9907213] [INSPIRE].

    ADS  Google Scholar 

  2. G.F. Giudice and O. Lebedev, Higgs-dependent Yukawa couplings, Phys. Lett. B 665 (2008) 79 [arXiv:0804.1753] [INSPIRE].

    ADS  Google Scholar 

  3. CMS collaboration, S. Chatrchyan et al., Search for neutral Higgs bosons decaying to tau pairs in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 713 (2012) 68 [arXiv:1202.4083] [INSPIRE].

    ADS  Google Scholar 

  4. ATLAS collaboration, G. Aad et al., Search for neutral MSSM Higgs bosons decaying to tau+tau-pairs in proton-proton collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, ATLAS-CONF-2011-13 [arXiv:1202.4083] [INSPIRE].

  5. H. Baer, C. Kao and J. Sayre, Prospects for Higgs Searches with the Tri-bottom Channel in Unified SUSY Models, Phys. Rev. D 85 (2012) 035021 [arXiv:1112.5922] [INSPIRE].

    ADS  Google Scholar 

  6. C. Kao, S. Sachithanandam, J. Sayre and Y. Wang, Discovering the Higgs Bosons of Minimal Supersymmetry with Bottom Quarks, Phys. Lett. B 682 (2009) 291 [arXiv:0908.1156] [INSPIRE].

    ADS  Google Scholar 

  7. D. Atwood, S. Bar-Shalom, G. Eilam and A. Soni, Three heavy jet events at hadron colliders as a sensitive probe of the Higgs sector, Phys. Rev. D 69 (2004) 033006 [hep-ph/0309016] [INSPIRE].

    ADS  Google Scholar 

  8. F. Maltoni, Z. Sullivan and S. Willenbrock, Higgs-boson production via bottom-quark fusion, Phys. Rev. D 67 (2003) 093005 [hep-ph/0301033] [INSPIRE].

    ADS  Google Scholar 

  9. E. Boos and T. Plehn, Higgs boson production induced by bottom quarks, Phys. Rev. D 69 (2004) 094005 [hep-ph/0304034] [INSPIRE].

    ADS  Google Scholar 

  10. T. Plehn, Charged Higgs boson production in bottom gluon fusion, Phys. Rev. D 67 (2003) 014018 [hep-ph/0206121] [INSPIRE].

    ADS  Google Scholar 

  11. R. Harlander, M. Krämer and M. Schumacher, Bottom-quark associated Higgs-boson production: reconciling the four- and five-flavour scheme approach, arXiv:1112.3478 [INSPIRE].

  12. F. Maltoni, G. Ridolfi and M. Ubiali, b-initiated processes at the LHC: a reappraisal, arXiv:1203.6393 [INSPIRE].

  13. S. Dittmaier, M. Krämer and M. Spira, Higgs radiation off bottom quarks at the Tevatron and the CERN LHC, Phys. Rev. D 70 (2004) 074010 [hep-ph/0309204] [INSPIRE].

    ADS  Google Scholar 

  14. S. Dawson, C. Jackson, L. Reina and D. Wackeroth, Higgs production in association with bottom quarks at hadron colliders, Mod. Phys. Lett. A 21 (2006) 89 [hep-ph/0508293] [INSPIRE].

    ADS  Google Scholar 

  15. S. Dawson, C. Jackson, L. Reina and D. Wackeroth, Higgs boson production with bottom quarks at hadron colliders, Int. J. Mod. Phys. A 20 (2005) 3353 [hep-ph/0409345] [INSPIRE].

    ADS  Google Scholar 

  16. S. Dawson, C. Jackson, L. Reina and D. Wackeroth, Exclusive Higgs boson production with bottom quarks at hadron colliders, Phys. Rev. D 69 (2004) 074027 [hep-ph/0311067] [INSPIRE].

    ADS  Google Scholar 

  17. S. Dawson, C. Jackson, L. Reina and D. Wackeroth, Higgs boson production with one bottom quark jet at hadron colliders, Phys. Rev. Lett. 94 (2005) 031802 [hep-ph/0408077] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Dawson and P. Jaiswal, Weak Corrections to Associated Higgs-Bottom Quark Production, Phys. Rev. D 81 (2010) 073008 [arXiv:1002.2672] [INSPIRE].

    ADS  Google Scholar 

  19. R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].

    ADS  Google Scholar 

  20. S. Dittmaier, M. Krämer, A. Muck and T. Schluter, MSSM Higgs-boson production in bottom-quark fusion: Electroweak radiative corrections, JHEP 03 (2007) 114 [hep-ph/0611353] [INSPIRE].

    Article  ADS  Google Scholar 

  21. N. Kidonakis, Collinear and soft gluon corrections to Higgs production at NNNLO, Phys. Rev. D 77 (2008) 053008 [arXiv:0711.0142] [INSPIRE].

    ADS  Google Scholar 

  22. B. Field, Higgs boson resummation via bottom-quark fusion, hep-ph/0407254 [INSPIRE].

  23. A. Belyaev, P.M. Nadolsky and C.-P. Yuan, Transverse momentum resummation for Higgs boson produced via bb fusion at hadron colliders, JHEP 04 (2006) 004 [hep-ph/0509100] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R. Harlander and M. Wiesemann, Jet-veto in bottom-quark induced Higgs production at next-to-next-to-leading order, JHEP 04 (2012) 066 [arXiv:1111.2182] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R.V. Harlander, K.J. Ozeren and M. Wiesemann, Higgs plus jet production in bottom quark annihilation at next-to-leading order, Phys. Lett. B 693 (2010) 269 [arXiv:1007.5411] [INSPIRE].

    ADS  Google Scholar 

  26. R.K. Ellis, D. Ross and A. Terrano, The Perturbative Calculation of Jet Structure in e + e Annihilation, Nucl. Phys. B 178 (1981) 421 [INSPIRE].

    Article  ADS  Google Scholar 

  27. B. Mele, P. Nason and G. Ridolfi, QCD radiative corrections to Z boson pair production in hadronic collisions, Nucl. Phys. B 357 (1991) 409 [INSPIRE].

    Article  ADS  Google Scholar 

  28. D.A. Kosower, Antenna factorization of gauge theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [INSPIRE].

    ADS  Google Scholar 

  29. A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Four particle phase space integrals in massless QCD, Nucl. Phys. B 682 (2004) 265 [hep-ph/0311276] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Gehrmann-De Ridder, T. Gehrmann and E.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Gehrmann-De Ridder and M. Ritzmann, NLO Antenna Subtraction with Massive Fermions, JHEP 07 (2009) 041 [arXiv:0904.3297] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].

    Article  ADS  Google Scholar 

  34. E. Nigel Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP 06 (2010) 096 [arXiv:1003.2824] [INSPIRE].

    Article  Google Scholar 

  35. R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02 (2011) 098 [arXiv:1011.6631] [INSPIRE].

    Article  ADS  Google Scholar 

  36. G. Abelof and A. Gehrmann-De Ridder, Antenna subtraction for the production of heavy particles at hadron colliders, JHEP 04 (2011) 063 [arXiv:1102.2443] [INSPIRE].

    Article  ADS  Google Scholar 

  37. T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12 (2011) 049 [arXiv:1107.4037] [INSPIRE].

    Article  ADS  Google Scholar 

  38. S. Weinzierl, Subtraction terms at NNLO, JHEP 03 (2003) 062 [hep-ph/0302180] [INSPIRE].

    Article  ADS  Google Scholar 

  39. S. Frixione and M. Grazzini, Subtraction at NNLO, JHEP 06 (2005) 010 [hep-ph/0411399] [INSPIRE].

    Article  ADS  Google Scholar 

  40. G. Somogyi, Z. Trócsányi and V. Del Duca, Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP 06 (2005) 024 [hep-ph/0502226] [INSPIRE].

    Article  ADS  Google Scholar 

  41. G. Somogyi, Z. Trócsányi and V. Del Duca, A Subtraction scheme for computing QCD jet cross sections at NNLO: Regularization of doubly-real emissions, JHEP 01 (2007) 070 [hep-ph/0609042] [INSPIRE].

    Article  ADS  Google Scholar 

  42. G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: Regularization of real-virtual emission, JHEP 01 (2007) 052 [hep-ph/0609043] [INSPIRE].

    Article  ADS  Google Scholar 

  43. P. Bolzoni, S.-O. Moch, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. II., JHEP 08 (2009) 079 [arXiv:0905.4390] [INSPIRE].

    Article  ADS  Google Scholar 

  44. P. Bolzoni, G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms, JHEP 01 (2011) 059 [arXiv:1011.1909] [INSPIRE].

    Article  ADS  Google Scholar 

  45. G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: Integrating the subtraction terms. I., JHEP 08 (2008) 042 [arXiv:0807.0509] [INSPIRE].

    Article  ADS  Google Scholar 

  46. U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. I., JHEP 09 (2008) 107 [arXiv:0807.0514] [INSPIRE].

    Article  ADS  Google Scholar 

  47. M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].

    ADS  Google Scholar 

  48. M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].

    Article  ADS  Google Scholar 

  49. R. Boughezal, K. Melnikov and F. Petriello, A subtraction scheme for NNLO computations, Phys. Rev. D 85 (2012) 034025 [arXiv:1111.7041] [INSPIRE].

    ADS  Google Scholar 

  50. C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].

    ADS  Google Scholar 

  51. S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].

    Article  ADS  Google Scholar 

  52. T. Binoth and G. Heinrich, An Automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [INSPIRE].

    Article  ADS  Google Scholar 

  54. C. Anastasiou, L.J. Dixon and K. Melnikov, NLO Higgs boson rapidity distributions at hadron colliders, Nucl. Phys. Proc. Suppl. 116 (2003) 193 [hep-ph/0211141] [INSPIRE].

    Article  ADS  Google Scholar 

  55. C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: Differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [INSPIRE].

    Article  ADS  Google Scholar 

  56. C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].

    Article  ADS  Google Scholar 

  57. M. Grazzini, NNLO predictions for the Higgs boson signal in the H → W W → lνlν and H → ZZ → 4l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].

    Article  ADS  Google Scholar 

  58. S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: A Fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].

    Article  ADS  Google Scholar 

  59. K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through \( O\left( {\alpha_s^2} \right) \), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].

    ADS  Google Scholar 

  60. C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [INSPIRE].

    Article  ADS  Google Scholar 

  61. C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].

    ADS  Google Scholar 

  62. R. Gavin, Y. Li, F. Petriello and S. Quackenbush, W physics at the LHC with FEWZ 2.1, arXiv:1201.5896 [INSPIRE].

  63. G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  64. C. Anastasiou, K. Melnikov and F. Petriello, Real radiation at NNLO: e + e → 2 jets through \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 93 (2004) 032002 [hep-ph/0402280] [INSPIRE].

    Article  ADS  Google Scholar 

  65. A. Gehrmann-De Ridder, T. Gehrmann and E.N. Glover, Infrared structure of e + e → 2 jets at NNLO, Nucl. Phys. B 691 (2004) 195 [hep-ph/0403057] [INSPIRE].

    Article  ADS  Google Scholar 

  66. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [INSPIRE].

    Article  ADS  Google Scholar 

  67. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Infrared structure of e + e  → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].

    Article  ADS  Google Scholar 

  68. S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012) 072001 [arXiv:1110.2375] [INSPIRE].

    Article  ADS  Google Scholar 

  69. C. Anastasiou, F. Herzog and A. Lazopoulos, The Fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD, JHEP 03 (2012) 035 [arXiv:1110.2368] [INSPIRE].

    Article  ADS  Google Scholar 

  70. C. Anastasiou, F. Herzog and A. Lazopoulos, On the factorization of overlapping singularities at NNLO, JHEP 03 (2011) 038 [arXiv:1011.4867] [INSPIRE].

    Article  ADS  Google Scholar 

  71. T. Huber and D. Maître, HypExp 2, Expanding Hypergeometric Functions about Half-Integer Parameters, Comput. Phys. Commun. 178 (2008) 755 [arXiv:0708.2443] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  72. C. Anastasiou, private communication.

  73. C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous Standard Model interactions, JHEP 12 (2011) 058 [arXiv:1107.0683] [INSPIRE].

    Article  ADS  Google Scholar 

  74. T. Hahn, CUBA: A Library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  75. C. Anastasiou, G. Dissertori, F. Stockli and B.R. Webber, QCD radiation effects on the H → WW → lνlν signal at the LHC, JHEP 03 (2008) 017 [arXiv:0801.2682] [INSPIRE].

    Article  ADS  Google Scholar 

  76. A. Banfi, G.P. Salam and G. Zanderighi, NLL + NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE].

    Article  ADS  Google Scholar 

  77. M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Mueller.

Additional information

ArXiv ePrint: 1204.4415

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buehler, S., Herzog, F., Lazopoulos, A. et al. The fully differential hadronic production of a Higgs boson through bottom-quark fusion at NNLO. J. High Energ. Phys. 2012, 115 (2012). https://doi.org/10.1007/JHEP07(2012)115

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)115

Keywords