Abstract
We perform a global analysis of the constraints on a possible Higgs-like particle with mass ∼ 125 GeV that are provided by the ATLAS, CDF, CMS and D0 experiments. We combine the available constraints on possible deviations from the Standard Model Higgs couplings to massive vector bosons and to fermions, considering also the possibilities of non-standard loop-induced couplings to photon and gluon pairs. We analyze the combined constraints on pseudo-dilaton scenarios and on some other scenarios in which the possible new particle is identified as a pseudo-Nambu-Goldstone boson in a composite electroweak symmetry-breaking sector.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = 7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].
CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].
CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson in the decay channel H → ZZ → 4 leptons in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Rev. Lett. 108 (2012) 111804, [arXiv:1202.1997] [INSPIRE].
ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson in the decay channel H-¿ZZ(*)-¿4l with 4.8 fb-1 of pp collision data at sqrt(s) = 7 TeV with ATLAS, Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415] [INSPIRE].
CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to bottom quarks in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 710 (2012) 284 [arXiv:1202.4195] [INSPIRE].
ATLAS collaboration, Search for the standard model Higgs boson produced in association with a vector boson and decaying to a b-quark pair using up to 4.7 fb −1 of pp collision data at \( \sqrt {s} = 7 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-015 (2012).
CMS Collaboration, A search using multivariate techniques for a standard model Higgs boson decaying into two photons, PAS-HIG-12-001 (2012).
ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt {s} = 7 \) TeV with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].
ATLAS collaboration, Search for the standard model Higgs boson in the H → WW → ℓνℓν decay mode with 4.7 fb −1 of ATLAS data at \( \sqrt {s} = 7 \) TeV, ATLAS-CONF-2012-012 (2012).
CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 710 (2012) 91 [arXiv:1202.1489] [INSPIRE].
CMS collaboration, S. Chatrchyan et al., Search for neutral Higgs bosons decaying to tau pairs in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 713 (2012) 68 [arXiv:1202.4083] [INSPIRE].
ATLAS collaboration, Search for the standard model Higgs boson in the H → τ + τ − decay mode with 4.7 fb −1 of ATLAS data at 7 TeV, ATLAS-CONF-2012-014 (2012).
CMS collaboration, Search for neutral Higgs bosons decaying into τ leptons in the dimuon channel with CMS in ppcollisions at 7 TeV, PAS-HIG-12-007 (2012).
CMS collaboration, Search for WH to 3 leptons, PAS-HIG-11-034 (2011).
CMS collaboration, Search for WH in final states with electrons, muons, taus, PAS-HIG-12-006 (2012).
CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].
TEVNPH, CDF, D0 collaboration, Combined CDF and D0 search for standard model Higgs boson production with up to 10.0 fb −1 of data, arXiv:1203.3774 [INSPIRE].
F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].
P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].
P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].
G. Guralnik, C. Hagen and T. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].
P.W. Higgs, Spontaneous symmetry breakdown without massless bosons, Phys. Rev. 145 (1966) 1156 [INSPIRE].
T. Kibble, Symmetry breaking in non-abelian gauge theories, Phys. Rev. 155 (1967) 1554 [INSPIRE].
J. Ellis and D.S. Hwang, Does the ‘Higgs’ have spin zero?, arXiv:1202.6660 [INSPIRE].
D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, arXiv:1202.3144 [INSPIRE].
M. Dührssen et al., Extracting Higgs boson couplings from CERN LHC data, Phys. Rev. D 70 (2004) 113009 [hep-ph/0406323] [INSPIRE].
R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].
G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].
R. Contino, The Higgs as a composite Nambu-Goldstone boson, arXiv:1005.4269 [INSPIRE].
R. Grober and M. Muhlleitner, Composite Higgs boson pair production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].
A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].
J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].
P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, arXiv:1203.4254 [INSPIRE].
T. Li, X. Wan, Y.-k. Wang and S.-h. Zhu, Constraints on the universal varying Yukawa couplings: from SM-like to fermiophobic, arXiv:1203.5083 [INSPIRE].
M. Rauch, Determination of Higgs-boson couplings (SFitter), arXiv:1203.6826 [INSPIRE].
XLVIIth Rencontres de Moriond , March 4–10, La Thuile, Italy (2012).
W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].
J. Fan, W.D. Goldberger, A. Ross and W. Skiba, Standard model couplings and collider signatures of a light scalar, Phys. Rev. D 79 (2009) 035017 [arXiv:0803.2040] [INSPIRE].
L. Vecchi, Phenomenology of a light scalar: the dilaton, Phys. Rev. D 82 (2010) 076009 [arXiv:1002.1721] [INSPIRE]
B. Grinstein and P. Uttayarat, A very light dilaton, JHEP 07 (2011) 038 [arXiv:1105.2370] [INSPIRE].
V. Barger, M. Ishida and W.-Y. Keung, Dilaton at the LHC, Phys. Rev. D 85 (2012) 015024 [arXiv:1111.2580] [INSPIRE].
B. Coleppa, T. Gregoire and H.E. Logan, Dilaton constraints and LHC prospects, Phys. Rev. D 85 (2012) 055001 [arXiv:1111.3276] [INSPIRE].
B.A. Campbell, J. Ellis and K.A. Olive, Phenomenology and cosmology of an electroweak pseudo-dilaton and electroweak baryons, JHEP 03 (2012) 026 [arXiv:1111.4495] [INSPIRE].
K. Yamawaki, M. Bando and K.-i. Matumoto, Scale invariant technicolor model and a technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [INSPIRE].
M. Bando, K.-i. Matumoto and K. Yamawaki, Technidilaton, Phys. Lett. B 178 (1986) 308 [INSPIRE].
D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: predictions for CERN LHC, Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [INSPIRE].
K. Yamawaki, Conformal Higgs, or techni-dilaton- composite Higgs near conformality, Int. J. Mod. Phys. A 25 (2010) 5128 [arXiv:1008.1834] [INSPIRE].
M. Hashimoto and K. Yamawaki, Techni-dilaton at conformal edge, Phys. Rev. D 83 (2011) 015008 [arXiv:1009.5482] [INSPIRE].
A. Delgado, K. Lane and A. Martin, A light scalar in low-scale technicolor, Phys. Lett. B 696 (2011) 482 [arXiv:1011.0745] [INSPIRE].
O. Antipin, M. Mojaza and F. Sannino, Light dilaton at fixed points and ultra light scale super Yang-Mills, Phys. Lett. B 712 (2012) 119 [arXiv:1107.2932] [INSPIRE].
S. Matsuzaki and K. Yamawaki, Techni-dilaton signatures at LHC, Prog. Theor. Phys. 127 (2012) 209 [arXiv:1109.5448] [INSPIRE].
D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].
D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].
C. Csáki, J. Hubisz and S.J. Lee, Radion phenomenology in realistic warped space models, Phys. Rev. D 76 (2007) 125015 [arXiv:0705.3844] [INSPIRE].
H. de Sandes and R. Rosenfeld, Radion-Higgs mixing effects on bounds from LHC Higgs searches, Phys. Rev. D 85 (2012) 053003 [arXiv:1111.2006] [INSPIRE].
K. Cheung and T.-C. Yuan, Could the excess seen at 124–126 GeV be due to the Randall-Sundrum radion?, Phys. Rev. Lett. 108 (2012) 141602 [arXiv:1112.4146] [INSPIRE].
K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
K. Agashe and R. Contino, The minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [INSPIRE].
R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].
C. Anastasiou, E. Furlan and J. Santiago, Realistic composite Higgs models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [INSPIRE].
J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [INSPIRE].
J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs under LHC experimental scrutiny, arXiv:1202.1286 [INSPIRE].
R. Rattazzi, EWSB after the first hints of a Higgs, talk at the ETH Zurich workshop “Higgs searches confronts theory”, Januray 9–11, Zurich, Switzerland (2012).
E. Gabrielli, B. Mele and M. Raidal, Has a fermiophobic Higgs boson been detected at the LHC?, arXiv:1202.1796 [INSPIRE].
G. Cacciapaglia, C. Csáki, G. Marandella and J. Terning, The gaugephobic Higgs, JHEP 02 (2007) 036 [hep-ph/0611358] [INSPIRE].
S. Weinberg, Nonlinear realizations of chiral symmetry, Phys. Rev. 166 (1968) 1568 [INSPIRE].
S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].
C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].
A. Salam and J. Strathdee, Nonlinear realizations. 2. Conformal symmetry, Phys. Rev. 184 (1969) 1760 [INSPIRE].
J.R. Ellis, Aspects of conformal symmetry and chirality, Nucl. Phys. B 22 (1970) 478 [INSPIRE].
T. Appelquist and C.W. Bernard, Strongly interacting Higgs bosons, Phys. Rev. D 22 (1980) 200 [INSPIRE].
J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].
R. Crewther, Nonperturbative evaluation of the anomalies in low-energy theorems, Phys. Rev. Lett. 28 (1972) 1421 [INSPIRE].
M.S. Chanowitz and J.R. Ellis, Canonical anomalies and broken scale invariance, Phys. Lett. B 40 (1972) 397 [INSPIRE].
M.S. Chanowitz and J.R. Ellis, Canonical trace anomalies, Phys. Rev. D 7 (1973) 2490 [INSPIRE].
S. Kraml et al., Searches for new physics: Les Houches recommendations for the presentation of LHC results, Eur. Phys. J. C 72 (2012) 1976 [arXiv:1203.2489] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1204.0464
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Ellis, J., You, T. Global analysis of experimental constraints on a possible Higgs-like particle with mass ∼ 125 GeV. J. High Energ. Phys. 2012, 140 (2012). https://doi.org/10.1007/JHEP06(2012)140
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2012)140