Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The light stop scenario from gauge mediation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper we embed the light stop scenario, a MSSM framework which explains the baryon asymmetry of the universe through a strong first order electroweak phase transition, in a top-down approach. The required low energy spectrum consists in the light SM-like Higgs, the right-handed stop, the gauginos and the Higgsinos while the remaining scalars are heavy. This spectrum is naturally driven by renormalization group evolution starting from a heavy scalar spectrum at high energies. The latter is obtained through a supersymmetry-breaking mix of gauge mediation, which provides the scalars masses by new gauge interactions, and gravity mediation, which generates gaugino and Higgsino masses. This supersymmetry breaking can also explain the μ and B μ parameters necessary for electroweak breaking and predicts small tri-linear mixing terms A t in agreement with electroweak baryogenesis requirements. The minimal ultraviolet embedding predicts a Higgs mass around its experimental lower bound and by a small extension higher masses m H ≲ 127 GeV can be accommodated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sakharov, Violation of CP Invariance, c Asymmetry and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991)392] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].

    Google Scholar 

  2. V. Kuzmin, V. Rubakov and M. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    ADS  Google Scholar 

  3. A.G. Cohen, D. Kaplan and A. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210] [INSPIRE].

    Article  ADS  Google Scholar 

  4. G.W. Anderson and L.J. Hall, The Electroweak phase transition and baryogenesis, Phys. Rev. D 45 (1992) 2685 [INSPIRE].

    ADS  Google Scholar 

  5. M. Carrington, The Effective potential at finite temperature in the Standard Model, Phys. Rev. D 45 (1992) 2933 [INSPIRE].

    ADS  Google Scholar 

  6. M. Dine, R.G. Leigh, P. Huet, A.D. Linde and D.A. Linde, Comments on the electroweak phase transition, Phys. Lett. B 283 (1992) 319 [hep-ph/9203201] [INSPIRE].

    ADS  Google Scholar 

  7. M. Dine, R.G. Leigh, P.Y. Huet, A.D. Linde and D.A. Linde, Towards the theory of the electroweak phase transition, Phys. Rev. D 46 (1992) 550 [hep-ph/9203203] [INSPIRE].

    ADS  Google Scholar 

  8. J. Espinosa, M. Quirós and F. Zwirner, On the nature of the electroweak phase transition, Phys. Lett. B 314 (1993) 206 [hep-ph/9212248] [INSPIRE].

    ADS  Google Scholar 

  9. W. Buchmüller, Z. Fodor, T. Helbig and D. Walliser, The Weak - electroweak phase transition, Annals Phys. 234 (1994) 260 [hep-ph/9303251] [INSPIRE].

    Article  ADS  Google Scholar 

  10. P.B. Arnold and O. Espinosa, The Effective potential and first order phase transitions: Beyond leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. D 50 (1994) 6662] [hep-ph/9212235] [INSPIRE].

    ADS  Google Scholar 

  11. K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, A Lattice Monte Carlo study of the hot electroweak phase transition, Nucl. Phys. B 407 (1993) 356 [hep-ph/9305345] [INSPIRE].

    Article  ADS  Google Scholar 

  12. Z. Fodor, J. Hein, K. Jansen, A. Jaster and I. Montvay, Simulating the electroweak phase transition in the SU(2) Higgs model, Nucl. Phys. B 439 (1995) 147 [hep-lat/9409017] [INSPIRE].

    Article  ADS  Google Scholar 

  13. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, The Electroweak phase transition: A Nonperturbative analysis, Nucl. Phys. B 466 (1996) 189 [hep-lat/9510020] [INSPIRE].

    Article  ADS  Google Scholar 

  14. K. Jansen, Status of the finite temperature electroweak phase transition on the lattice, Nucl. Phys. Proc. Suppl. 47 (1996) 196 [hep-lat/9509018] [INSPIRE].

    Article  ADS  Google Scholar 

  15. B. Bergerhoff and C. Wetterich, The Strongly interacting electroweak phase transition, Nucl. Phys. B 440 (1995) 171 [hep-ph/9409295] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G.R. Farrar and M. Shaposhnikov, Baryon asymmetry of the universe in the minimal Standard Model, Phys. Rev. Lett. 70 (1993) 2833 [Erratum ibid. 71 (1993) 210] [hep-ph/9305274] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Gavela, P. Hernández, J. Orloff and O. Pene, Standard model CP-violation and baryon asymmetry, Mod. Phys. Lett. A 9 (1994) 795 [hep-ph/9312215] [INSPIRE].

    ADS  Google Scholar 

  18. M. Gavela, P. Hernández, J. Orloff, O. Pene and C. Quimbay, Standard model CP-violation and baryon asymmetry. Part 2: Finite temperature, Nucl. Phys. B 430 (1994) 382 [hep-ph/9406289] [INSPIRE].

    Article  ADS  Google Scholar 

  19. P. Huet and E. Sather, Electroweak baryogenesis and standard model CP-violation, Phys. Rev. D 51 (1995) 379 [hep-ph/9404302] [INSPIRE].

    ADS  Google Scholar 

  20. G.F. Giudice, The Electroweak phase transition in supersymmetry, Phys. Rev. D 45 (1992) 3177 [INSPIRE].

    ADS  Google Scholar 

  21. K.S. Myint, Double Strangeness Five-Body System, Nucl. Phys. A 547 (1992) 227C.

    ADS  Google Scholar 

  22. J. Espinosa, M. Quirós and F. Zwirner, On the electroweak phase transition in the minimal supersymmetric Standard Model, Phys. Lett. B 307 (1993) 106 [hep-ph/9303317] [INSPIRE].

    ADS  Google Scholar 

  23. A. Brignole, J. Espinosa, M. Quirós and F. Zwirner, Aspects of the electroweak phase transition in the minimal supersymmetric standard model, Phys. Lett. B 324 (1994) 181 [hep-ph/9312296] [INSPIRE].

    ADS  Google Scholar 

  24. M.S. Carena, M. Quirós and C. Wagner, Opening the window for electroweak baryogenesis, Phys. Lett. B 380 (1996) 81 [hep-ph/9603420] [INSPIRE].

    ADS  Google Scholar 

  25. D. Delepine, J. Gerard, R. Gonzalez Felipe and J. Weyers, A Light stop and electroweak baryogenesis, Phys. Lett. B 386 (1996) 183 [hep-ph/9604440] [INSPIRE].

    ADS  Google Scholar 

  26. J.M. Cline and K. Kainulainen, Supersymmetric electroweak phase transition: Beyond perturbation theory, Nucl. Phys. B 482 (1996) 73 [hep-ph/9605235] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.M. Cline and K. Kainulainen, Supersymmetric electroweak phase transition: Dimensional reduction versus effective potential, Nucl. Phys. B 510 (1998) 88 [hep-ph/9705201] [INSPIRE].

    ADS  Google Scholar 

  28. M. Laine and K. Rummukainen, The MSSM electroweak phase transition on the lattice, Nucl. Phys. B 535 (1998) 423 [hep-lat/9804019] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Laine and K. Rummukainen, A Strong electroweak phase transition up to m(H) is about 105 GeV, Phys. Rev. Lett. 80 (1998) 5259 [hep-ph/9804255] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Laine, Effective theories of MSSM at high temperature, Nucl. Phys. B 481 (1996) 43 [Erratum ibid. B 548 (1999) 637-638] [hep-ph/9605283] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Losada, High temperature dimensional reduction of the MSSM and other multiscalar models, Phys. Rev. D 56 (1997) 2893 [hep-ph/9605266] [INSPIRE].

    ADS  Google Scholar 

  32. M. Losada, The Electroweak phase transition in the minimal supersymmetric standard model, hep-ph/9612337 [INSPIRE].

  33. G.R. Farrar and M. Losada, SUSY and the electroweak phase transition, Phys. Lett. B 406 (1997) 60 [hep-ph/9612346] [INSPIRE].

    ADS  Google Scholar 

  34. J. Espinosa, Dominant two loop corrections to the MSSM finite temperature effective potential, Nucl. Phys. B 475 (1996) 273 [hep-ph/9604320] [INSPIRE].

    Article  ADS  Google Scholar 

  35. B. de Carlos and J. Espinosa, The Baryogenesis window in the MSSM, Nucl. Phys. B 503 (1997) 24 [hep-ph/9703212] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M.S. Carena, M. Quirós, A. Riotto, I. Vilja and C. Wagner, Electroweak baryogenesis and low-energy supersymmetry, Nucl. Phys. B 503 (1997) 387 [hep-ph/9702409] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M.S. Carena, M. Quirós and C. Wagner, Electroweak baryogenesis and Higgs and stop searches at LEP and the Tevatron, Nucl. Phys. B 524 (1998) 3 [hep-ph/9710401] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis in the WKB approximation, Phys. Lett. B 417 (1998) 79 [Erratum ibid. B 448 (1999) 321] [hep-ph/9708393] [INSPIRE].

    ADS  Google Scholar 

  39. T. Multamaki and I. Vilja, CP violation and baryogenesis in the low-energy minimal supersymmetric standard model, Phys. Lett. B 411 (1997) 301 [hep-ph/9705469] [INSPIRE].

    ADS  Google Scholar 

  40. A. Riotto, More about electroweak baryogenesis in the minimal supersymmetric standard model, Int. J. Mod. Phys. D 7 (1998) 815 [hep-ph/9709286] [INSPIRE].

    ADS  Google Scholar 

  41. M.P. Worah, Supersymmetric baryogenesis at the electroweak phase transition, Phys. Rev. D 56 (1997) 2010 [hep-ph/9702423] [INSPIRE].

    ADS  Google Scholar 

  42. D. Bödeker, P. John, M. Laine and M. Schmidt, The Two loop MSSM finite temperature effective potential with stop condensation, Nucl. Phys. B 497 (1997) 387 [hep-ph/9612364] [INSPIRE].

    Article  ADS  Google Scholar 

  43. J.M. Cline and K. Kainulainen, A New source for electroweak baryogenesis in the MSSM, Phys. Rev. Lett. 85 (2000) 5519 [hep-ph/0002272] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis, JHEP 07 (2000) 018 [hep-ph/0006119] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M.S. Carena, J. Moreno, M. Quirós, M. Seco and C. Wagner, Supersymmetric CP-violating currents and electroweak baryogenesis, Nucl. Phys. B 599 (2001) 158 [hep-ph/0011055] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M.S. Carena, M. Quirós, M. Seco and C. Wagner, Improved results in supersymmetric electroweak baryogenesis, Nucl. Phys. B 650 (2003) 24 [hep-ph/0208043] [INSPIRE].

    Article  ADS  Google Scholar 

  47. T. Konstandin, T. Prokopec, M.G. Schmidt and M. Seco, MSSM electroweak baryogenesis and flavor mixing in transport equations, Nucl. Phys. B 738 (2006) 1 [hep-ph/0505103] [INSPIRE].

    Article  ADS  Google Scholar 

  48. C. Lee, V. Cirigliano and M.J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis, Phys. Rev. D 71 (2005) 075010 [hep-ph/0412354] [INSPIRE].

    ADS  Google Scholar 

  49. V. Cirigliano, S. Profumo and M.J. Ramsey-Musolf, Baryogenesis, Electric Dipole Moments and Dark Matter in the MSSM, JHEP 07 (2006) 002 [hep-ph/0603246] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S.Y. Ayazi, Revisiting electroweak baryogenesis in context of cancelation scenario in the MSSM, eConf C 0605151 (2006) 0004 [hep-ph/0611056] [INSPIRE].

    Google Scholar 

  51. V. Cirigliano, Y. Li, S. Profumo and M.J. Ramsey-Musolf, MSSM Baryogenesis and Electric Dipole Moments: An Update on the Phenomenology, JHEP 01 (2010) 002 [arXiv:0910.4589] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Carena, G. Nardini, M. Quirós and C.E. Wagner, The Effective Theory of the Light Stop Scenario, JHEP 10 (2008) 062 [arXiv:0806.4297] [INSPIRE].

    Article  ADS  Google Scholar 

  53. M. Carena, G. Nardini, M. Quirós and C. Wagner, The Baryogenesis Window in the MSSM, Nucl. Phys. B 812 (2009) 243 [arXiv:0809.3760] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].

    ADS  Google Scholar 

  55. ATLAS collaboration, Combination of Higgs Boson Searches with up to 4.9 fb-1 of pp Collisions Data Taken at a center-of-mass energy of 7 TeV with the ATLAS Experiment at the LHC, ATLAS-CONF-2011-163 (2011).

  56. CMS collaboration, Combination of SM Higgs Searches, PAS-HIG-11-032.

  57. G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

    Article  ADS  Google Scholar 

  58. P. Langacker, The Physics of Heavy Z Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].

    Article  ADS  Google Scholar 

  59. F. del Aguila, M. Quirós and F. Zwirner, Detecting E 6 Neutral Gauge Bosons Through Lepton Pairs at Hadron Colliders, Nucl. Phys. B 287 (1987) 419 [INSPIRE].

    Article  ADS  Google Scholar 

  60. L.J. Hall and A. Rasin, On the generality of certain predictions for quark mixing, Phys. Lett. B 315 (1993) 164 [hep-ph/9303303] [INSPIRE].

    ADS  Google Scholar 

  61. E. Gorbatov and M. Sudano, Sparticle Masses in Higgsed Gauge Mediation, JHEP 10 (2008) 066 [arXiv:0802.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  62. N. Craig, M. McCullough and J. Thaler, The New Flavor of Higgsed Gauge Mediation, JHEP 03 (2012) 049 [arXiv:1201.2179] [INSPIRE].

    Article  ADS  Google Scholar 

  63. A. Delgado and M. Quirós, The Least Supersymmetric Standard Model, Phys. Rev. D 85 (2012) 015001 [arXiv:1111.0528] [INSPIRE].

    ADS  Google Scholar 

  64. H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  65. G. Giudice and A. Masiero, A Natural Solution to the mu Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].

    ADS  Google Scholar 

  66. M.S. Carena, M. Quirós and C. Wagner, Effective potential methods and the Higgs mass spectrum in the MSSM, Nucl. Phys. B 461 (1996) 407 [hep-ph/9508343] [INSPIRE].

    Article  ADS  Google Scholar 

  67. G. Dvali, G. Giudice and A. Pomarol, The Mu problem in theories with gauge mediated supersymmetry breaking, Nucl. Phys. B 478 (1996) 31 [hep-ph/9603238] [INSPIRE].

    Article  ADS  Google Scholar 

  68. J. Espinosa and M. Quirós, On Higgs boson masses in nonminimal supersymmetric standard models, Phys. Lett. B 279 (1992) 92 [INSPIRE].

    ADS  Google Scholar 

  69. J.R. Espinosa and M. Quirós, Gauge Unification and the Supersymmetric Light Higgs Mass, Physical Review Letters 81 (1998) 516 [hep-ph/9804235].

    Article  ADS  Google Scholar 

  70. CDF and D0 Collaborations collaboration, P. Calfayan, Search for scalar top and bottom quarks at the Tevatron, AIP Conf. Proc. 1078 (2009) 262 [INSPIRE].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germano Nardini.

Additional information

ArXiv ePrint: 1201.5164

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado, A., Nardini, G. & Quirós, M. The light stop scenario from gauge mediation. J. High Energ. Phys. 2012, 137 (2012). https://doi.org/10.1007/JHEP04(2012)137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)137

Keywords

Navigation