Abstract
There exist non-trivial stationary points of the Euclidean action for an axion particle minimally coupled to Einstein gravity, dubbed wormholes. They explicitly break the continuos global shift symmetry of the axion in a non-perturbative way, and generate an effective potential that may compete with QCD depending on the value of the axion decay constant. In this paper, we explore both theoretical and phenomenological aspects of this issue. On the theory side, we address the problem of stability of the wormhole solutions, and we show that the spectrum of the quadratic action features only positive eigenvalues. On the phenomenological side, we discuss, beside the obvious application to the QCD axion, relevant consequences for models with ultralight dark matter and black hole superradiance. We conclude discussing wormhole solutions for a generic coset and the potential they generate.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
T. Banks, L.J. Dixon, D. Friedan and E.J. Martinec, Phenomenology and Conformal Field Theory Or Can String Theory Predict the Weak Mixing Angle?, Nucl. Phys. B 299 (1988) 613 [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].
S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539 [INSPIRE].
K.S. Babu, I. Gogoladze and K. Wang, Stabilizing the axion by discrete gauge symmetries, Phys. Lett. B 560 (2003) 214 [hep-ph/0212339] [INSPIRE].
R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].
L. Di Luzio, E. Nardi and L. Ubaldi, Accidental Peccei-Quinn symmetry protected to arbitrary order, Phys. Rev. Lett. 119 (2017) 011801 [arXiv:1704.01122] [INSPIRE].
H. Fukuda, M. Ibe, M. Suzuki and T.T. Yanagida, A “gauged” U(1) Peccei-Quinn symmetry, Phys. Lett. B 771 (2017) 327 [arXiv:1703.01112] [INSPIRE].
J.E. Kim, Invisible Axion and Neutrino Oscillation in SU(11), Phys. Rev. D 24 (1981) 3007 [INSPIRE].
H.M. Georgi, L.J. Hall and M.B. Wise, Grand Unified Models With an Automatic Peccei-Quinn Symmetry, Nucl. Phys. B 192 (1981) 409 [INSPIRE].
K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, Peccei-Quinn symmetry from a gauged discrete R symmetry, Phys. Rev. D 88 (2013) 075022 [arXiv:1308.1227] [INSPIRE].
A.G. Dias, V. Pleitez and M.D. Tonasse, Naturally light invisible axion in models with large local discrete symmetries, Phys. Rev. D 67 (2003) 095008 [hep-ph/0211107] [INSPIRE].
A.G. Dias, A.C.B. Machado, C.C. Nishi, A. Ringwald and P. Vaudrevange, The Quest for an Intermediate-Scale Accidental Axion and Further ALPs, JHEP 06 (2014) 037 [arXiv:1403.5760] [INSPIRE].
J.E. Kim and D.J.E. Marsh, An ultralight pseudoscalar boson, Phys. Rev. D 93 (2016) 025027 [arXiv:1510.01701] [INSPIRE].
R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].
S.B. Giddings and A. Strominger, Axion Induced Topology Change in Quantum Gravity and String Theory, Nucl. Phys. B 306 (1988) 890 [INSPIRE].
K.-M. Lee, Wormholes and Goldstone Bosons, Phys. Rev. Lett. 61 (1988) 263 [INSPIRE].
A. Hebecker, P. Mangat, S. Theisen and L.T. Witkowski, Can Gravitational Instantons Really Constrain Axion Inflation?, JHEP 02 (2017) 097 [arXiv:1607.06814] [INSPIRE].
M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP 08 (2015) 032 [arXiv:1503.03886] [INSPIRE].
T.C. Bachlechner, C. Long and L. McAllister, Planckian Axions and the Weak Gravity Conjecture, JHEP 01 (2016) 091 [arXiv:1503.07853] [INSPIRE].
N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].
S. Coleman, Aspects of symmetry — Selected Erice lectures, Cambridge University Press (2010).
A.I. Vainshtein, V.I. Zakharov, V.A. Novikov and M.A. Shifman, ABC’s of Instantons, Sov. Phys. Usp. 25 (1982) 195 [INSPIRE].
J.W. York Jr., Gravitational degrees of freedom and the initial-value problem, Phys. Rev. Lett. 26 (1971) 1656 [INSPIRE].
J.W. York Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].
G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].
J. Garriga, X. Montes, M. Sasaki and T. Tanaka, Canonical quantization of cosmological perturbations in the one-bubble open universe, Nucl. Phys. B 513 (1998) 343 [Erratum ibid. B 551 (1999) 511] [astro-ph/9706229] [INSPIRE].
T. Hertog and N. Turok, Gravity waves from instantons, Phys. Rev. D 62 (2000) 083514 [astro-ph/9903075] [INSPIRE].
S. Gratton and N. Turok, Homogeneous modes of cosmological instantons, Phys. Rev. D 63 (2001) 123514 [hep-th/0008235] [INSPIRE].
S. Gratton and N. Turok, Cosmological perturbations from the no boundary Euclidean path integral, Phys. Rev. D 60 (1999) 123507 [astro-ph/9902265] [INSPIRE].
V.A. Rubakov and O. Yu. Shvedov, A Negative mode about Euclidean wormhole, Phys. Lett. B 383 (1996) 258 [gr-qc/9604038] [INSPIRE].
G.W. Gibbons, S.W. Hawking and M.J. Perry, Path Integrals and the Indefiniteness of the Gravitational Action, Nucl. Phys. B 138 (1978) 141 [INSPIRE].
P.O. Mazur and E. Mottola, The Gravitational Measure, Solution of the Conformal Factor Problem and Stability of the Ground State of Quantum Gravity, Nucl. Phys. B 341 (1990) 187 [INSPIRE].
S.-J. Rey, The Axion Dynamics in Wormhole Background, Phys. Rev. D 39 (1989) 3185 [INSPIRE].
S.B. Giddings and A. Strominger, Loss of Incoherence and Determination of Coupling Constants in Quantum Gravity, Nucl. Phys. B 307 (1988) 854 [INSPIRE].
S.R. Coleman, Black Holes as Red Herrings: Topological Fluctuations and the Loss of Quantum Coherence, Nucl. Phys. B 307 (1988) 867 [INSPIRE].
J. Preskill, Wormholes in Space-time and the Constants of Nature, Nucl. Phys. B 323 (1989) 141 [INSPIRE].
S.W. Hawking, The Effective action for wormholes, Nucl. Phys. B 363 (1991) 117 [INSPIRE].
S.W. Hawking, Wormholes in Space-Time, Phys. Rev. D 37 (1988) 904 [INSPIRE].
S.A. Ridgway, Axion charge decay and wormhole destabilization, Phys. Lett. B 264 (1991) 31 [INSPIRE].
A. Hebecker, T. Mikhail and P. Soler, Euclidean wormholes, baby universes and their impact on particle physics and cosmology, Front. Astron. Space Sci. 5 (2018) 35 [arXiv:1807.00824] [INSPIRE].
L.F. Abbott and M.B. Wise, Wormholes and Global Symmetries, Nucl. Phys. B 325 (1989) 687 [INSPIRE].
B. Zwiebach, Curvature Squared Terms and String Theories, Phys. Lett. 156B (1985) 315 [INSPIRE].
D.J. Gross and J.H. Sloan, The Quartic Effective Action for the Heterotic String, Nucl. Phys. B 291 (1987) 41 [INSPIRE].
A.A. Tseytlin, Heterotic type-I superstring duality and low-energy effective actions, Nucl. Phys. B 467 (1996) 383 [hep-th/9512081] [INSPIRE].
D.J. Gross and E. Witten, Superstring Modifications of Einstein’s Equations, Nucl. Phys. B 277 (1986) 1 [INSPIRE].
M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory. Vol. 1: Introduction, Cambridge University Press (1987) [INSPIRE].
M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies And Phenomenology, Cambridge University Press (1987) [INSPIRE].
D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, The Heterotic String, Phys. Rev. Lett. 54 (1985) 502 [INSPIRE].
B. Grinstein, Charge Quantization of Wormholes and the Finiteness of Newton’s Constant, Nucl. Phys. B 321 (1989) 439 [INSPIRE].
G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034 [arXiv:1511.02867] [INSPIRE].
L. Visinelli and P. Gondolo, Dark Matter Axions Revisited, Phys. Rev. D 80 (2009) 035024 [arXiv:0903.4377] [INSPIRE].
L. Visinelli and P. Gondolo, Axion cold dark matter in view of BICEP2 results, Phys. Rev. Lett. 113 (2014) 011802 [arXiv:1403.4594] [INSPIRE].
L. Visinelli and P. Gondolo, Axion cold dark matter in non-standard cosmologies, Phys. Rev. D 81 (2010) 063508 [arXiv:0912.0015] [INSPIRE].
L. Visinelli, Light axion-like dark matter must be present during inflation, Phys. Rev. D 96 (2017) 023013 [arXiv:1703.08798] [INSPIRE].
M. Kawasaki, K. Saikawa and T. Sekiguchi, Axion dark matter from topological defects, Phys. Rev. D 91 (2015) 065014 [arXiv:1412.0789] [INSPIRE].
G.G. Raffelt, Axion Constraints From White Dwarf Cooling Times, Phys. Lett. 166B (1986) 402 [INSPIRE].
Planck collaboration, Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
A. Arvanitaki, M. Baryakhtar and X. Huang, Discovering the QCD Axion with Black Holes and Gravitational Waves, Phys. Rev. D 91 (2015) 084011 [arXiv:1411.2263] [INSPIRE].
R. Brito, V. Cardoso and P. Pani, Superradiance, Lect. Notes Phys. 906 (2015) 1 [arXiv:1501.06570] [INSPIRE].
A. Arvanitaki and S. Dubovsky, Exploring the String Axiverse with Precision Black Hole Physics, Phys. Rev. D 83 (2011) 044026 [arXiv:1004.3558] [INSPIRE].
A. Arvanitaki, M. Baryakhtar, S. Dimopoulos, S. Dubovsky and R. Lasenby, Black Hole Mergers and the QCD Axion at Advanced LIGO, Phys. Rev. D 95 (2017) 043001 [arXiv:1604.03958] [INSPIRE].
G.F. Giudice, M. McCullough and A. Urbano, Hunting for Dark Particles with Gravitational Waves, JCAP 10 (2016) 001 [arXiv:1605.01209] [INSPIRE].
R. Brito et al., Stochastic and resolvable gravitational waves from ultralight bosons, Phys. Rev. Lett. 119 (2017) 131101 [arXiv:1706.05097] [INSPIRE].
R. Brito et al., Gravitational wave searches for ultralight bosons with LIGO and LISA, Phys. Rev. D 96 (2017) 064050 [arXiv:1706.06311] [INSPIRE].
T. Helfer, D.J.E. Marsh, K. Clough, M. Fairbairn, E.A. Lim and R. Becerril, Black hole formation from axion stars, JCAP 03 (2017) 055 [arXiv:1609.04724] [INSPIRE].
W. Hu, R. Barkana and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett. 85 (2000) 1158 [astro-ph/0003365] [INSPIRE].
B. Moore, T.R. Quinn, F. Governato, J. Stadel and G. Lake, Cold collapse and the core catastrophe, Mon. Not. Roy. Astron. Soc. 310 (1999) 1147 [astro-ph/9903164] [INSPIRE].
M. Boylan-Kolchin, J.S. Bullock and M. Kaplinghat, Too big to fail? The puzzling darkness of massive Milky Way subhaloes, Mon. Not. Roy. Astron. Soc. 415 (2011) L40 [arXiv:1103.0007] [INSPIRE].
M. Boylan-Kolchin, J.S. Bullock and M. Kaplinghat, The Milky Way’s bright satellites as an apparent failure of LCDM, Mon. Not. Roy. Astron. Soc. 422 (2012) 1203 [arXiv:1111.2048] [INSPIRE].
P. Sikivie and Q. Yang, Bose-Einstein Condensation of Dark Matter Axions, Phys. Rev. Lett. 103 (2009) 111301 [arXiv:0901.1106] [INSPIRE].
T. Harko, Cosmological dynamics of dark matter Bose-Einstein Condensation, Phys. Rev. D 83 (2011) 123515 [arXiv:1105.5189] [INSPIRE].
T. Harko, Bose-Einstein condensation of dark matter solves the core/cusp problem, JCAP 05 (2011) 022 [arXiv:1105.2996] [INSPIRE].
C.G. Boehmer and T. Harko, Can dark matter be a Bose-Einstein condensate?, JCAP 06 (2007) 025 [arXiv:0705.4158] [INSPIRE].
H.-Y. Schive, T. Chiueh and T. Broadhurst, Cosmic Structure as the Quantum Interference of a Coherent Dark Wave, Nature Phys. 10 (2014) 496 [arXiv:1406.6586] [INSPIRE].
P.-H. Chavanis, Growth of perturbations in an expanding universe with Bose-Einstein condensate dark matter, Astron. Astrophys. 537 (2012) A127 [arXiv:1103.2698] [INSPIRE].
L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev. D 95 (2017) 043541 [arXiv:1610.08297] [INSPIRE].
A. Diez-Tejedor and D.J.E. Marsh, Cosmological production of ultralight dark matter axions, arXiv:1702.02116 [INSPIRE].
Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
P. Svrček and E. Witten, Axions In String Theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].
S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].
C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].
T. Hertog, B. Truijen and T. Van Riet, Euclidean axion wormholes have multiple negative modes, arXiv:1811.12690 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1706.07415
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Alonso, R., Urbano, A. Wormholes and masses for Goldstone bosons. J. High Energ. Phys. 2019, 136 (2019). https://doi.org/10.1007/JHEP02(2019)136
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2019)136