Abstract
Studies of medium-induced QCD radiation usually rely on the calculation of single-gluon radiation spectrum off an energetic parton traversing an extended colored medium. Recently, the importance of interference effects between emitters in the medium has been explored. In this work we extend previous studies by calculating the single-gluon coherent spectrum off an antenna consisting of a massive quark-antiquark pair. Interferences dominate the spectrum of soft gluons, which are mainly emitted outside of the cone made by the antenna opening angle, while the antenna results in a superposition of independent emitters above a critical gluon energy scale. We study the interplay between the dead-cone effect and medium-induced jet broadening in both cases of soft and hard gluons and present results on energy loss distributions.
Similar content being viewed by others
References
PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].
B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28 [nucl-ex/0410022] [INSPIRE].
BRAHMS collaboration, I. Arsene et al., Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment, Nucl. Phys. A 757 (2005) 1 [nucl-ex/0410020] [INSPIRE].
STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].
PHENIX collaboration, A. Adare et al., Suppression pattern of neutral pions at high transverse momentum in Au+Au collisions at \( \sqrt {{{s_{{N{ }N}}}}} = 200{ }GeV \) and constraints on medium transport coefficients, Phys. Rev. Lett. 101 (2008) 232301 [arXiv:0801.4020] [INSPIRE].
ALICE collaboration, K. Aamodt, Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at \( \sqrt {{{s_{{N{ }N}}}}} = 2.76{ }TeV \), Phys. Lett. B 696 (2011) 30 [arXiv:1012.1004] [INSPIRE].
STAR collaboration, J. Adams et al., Direct observation of dijets in central Au+Au collisions at \( \sqrt {{{s_{{N\,N}}}}} = 200{ }GeV \), Phys. Rev. Lett. 97 (2006) 162301 [nucl-ex/0604018] [INSPIRE].
STAR collaboration, B. Abelev et al., Transverse momentum and centrality dependence of high-p T non-photonic electron suppression in Au+Au collisions at \( \sqrt {{{s_{{N{ }N}}}}} = 200{ }GeV \), Phys. Rev. Lett. 98 (2007) 192301 [Erratum ibid. 106 (2011) 159902] [nucl-ex/0607012] [INSPIRE].
PHENIX collaboration, A. Adare et al., Energy loss and flow of heavy quarks in Au+Au collisions at \( \sqrt {{{s_{{N{ }N}}}}} = 200{ }GeV \), Phys. Rev. Lett. 98 (2007) 172301 [nucl-ex/0611018] [INSPIRE].
A. Dainese, Heavy-flavour production in Pb-Pb collisions at the LHC, measured with the ALICE detector, J. Phys. G 38 (2011) 124032 [arXiv:1106.4042] [INSPIRE].
STAR collaboration, J. Putschke, First fragmentation function measurements from full jet reconstruction in heavy-ion collisions at \( \sqrt {{{s_{{N{ }N}}}}} = 200{ }GeV \) by STAR, Eur. Phys. J. C 61 (2009) 629 [arXiv:0809.1419] [INSPIRE].
STAR collaboration, S. Salur, First direct measurement of jets in \( \sqrt {{{s_{{N{ }N}}}}} = 200{ }GeV \) heavy ion collisions by STAR, Eur. Phys. J. C 61 (2009) 761 [arXiv:0809.1609] [INSPIRE].
STAR collaboration, E. Bruna, Measurements of jet structure and fragmentation from full jet reconstruction in heavy ion collisions at RHIC, Nucl. Phys. A 830 (2009) 267C [arXiv:0907.4788] [INSPIRE].
STAR collaboration, M. Ploskon, Inclusive cross section and correlations of fully reconstructed jets in \( \sqrt {{{s_{{N{ }N}}}}} = 200{ }GeV \) Au+Au and p+p collisions, Nucl. Phys. A 830 (2009) 255C [arXiv:0908.1799] [INSPIRE].
ATLAS collaboration, G. Aad et al., Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at \( \sqrt {{{s_{{N{ }N}}}}} = 2.76{ }TeV \) with the ATLAS detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303 [arXiv:1011.6182] [INSPIRE].
CMS collaboration, S. Chatrchyan et al., Observation and studies of jet quenching in Pb-Pb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV, Phys. Rev. C 84 (2011) 024906 [arXiv:1102.1957] [INSPIRE].
I. Lokhtin, L. Sarycheva, A. Snigirev and K. Teplov, Medium-modified fragmentation of b-jets tagged by a leading muon in ultrarelativistic heavy ion collisions, Eur. Phys. J. C 37 (2004) 465 [hep-ph/0407109] [INSPIRE].
N. Armesto, A. Dainese, C.A. Salgado and U.A. Wiedemann, Testing the color charge and mass dependence of parton energy loss with heavy-to-light ratios at RHIC and CERN LHC, Phys. Rev. D 71 (2005) 054027 [hep-ph/0501225] [INSPIRE].
J. Casalderrey-Solana and C.A. Salgado, Introductory lectures on jet quenching in heavy ion collisions, Acta Phys. Polon. B 38 (2007) 3731 [arXiv:0712.3443] [INSPIRE].
D. d’Enterria, Jet quenching, arXiv:0902.2011 [INSPIRE].
U.A. Wiedemann, Jet quenching in heavy ion collisions, arXiv:0908.2306 [INSPIRE].
A. Majumder and M. Van Leeuwen, The theory and phenomenology of perturbative QCD based jet quenching, Prog. Part. Nucl. Phys. A 66 (2011) 41 [arXiv:1002.2206] [INSPIRE].
N. Armesto, M. Cacciari, T. Hirano, J.L. Nagle and C.A. Salgado, Constraint fitting of experimental data with a jet quenching model embedded in a hydrodynamical bulk medium, J. Phys. G 37 (2010) 025104 [arXiv:0907.0667] [INSPIRE].
Y.L. Dokshitzer, V.A. Khoze and S. Troian, Particle spectra in light and heavy quark jets, J. Phys. G 17 (1991) 1481 [INSPIRE].
Yu.L. Dokshitzer, V.A. Khoze, A.H. Mueller and S.I. Troyan, Basics of perturbative QCD, Editions Frontières, Gif-sur-Yvette France (1991)
N. Armesto, C.A. Salgado and U.A. Wiedemann, Medium induced gluon radiation off massive quarks fills the dead cone, Phys. Rev. D 69 (2004) 114003 [hep-ph/0312106] [INSPIRE].
M. Djordjevic and M. Gyulassy, Heavy quark radiative energy loss in QCD matter, Nucl. Phys. A 733 (2004) 265 [nucl-th/0310076] [INSPIRE].
B.-W. Zhang, E. Wang and X.-N. Wang, Heavy quark energy loss in nuclear medium, Phys. Rev. Lett. 93 (2004) 072301 [nucl-th/0309040] [INSPIRE].
Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, Anti-angular ordering of gluon radiation in QCD media, Phys. Rev. Lett. 106 (2011) 122002 [arXiv:1009.2965] [INSPIRE].
Y. Mehtar-Tani, C. Salgado and K. Tywoniuk, Jets in QCD media: from color coherence to decoherence, Phys. Lett. B 707 (2012) 156 [arXiv:1102.4317] [INSPIRE].
Y. Mehtar-Tani and K. Tywoniuk, Jet coherence in QCD media: the antenna radiation spectrum, arXiv:1105.1346 [INSPIRE].
J. Casalderrey-Solana and E. Iancu, Interference effects in medium-induced gluon radiation, JHEP 08 (2011) 015 [arXiv:1105.1760] [INSPIRE].
U.A. Wiedemann, Transverse dynamics of hard partons in nuclear media and the QCD dipole, Nucl. Phys. B 582 (2000) 409 [hep-ph/0003021] [INSPIRE].
M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to non-Abelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].
C.A. Salgado and U.A. Wiedemann, Calculating quenching weights, Phys. Rev. D 68 (2003) 014008 [hep-ph/0302184] [INSPIRE].
N. Armesto, L. Cunqueiro, C.A. Salgado and W.-C. Xiang, Medium-evolved fragmentation functions, JHEP 02 (2008) 048 [arXiv:0710.3073] [INSPIRE].
N. Armesto, L. Cunqueiro and C.A. Salgado, Q-PYTHIA: a medium-modified implementation of final state radiation, Eur. Phys. J. C 63 (2009) 679 [arXiv:0907.1014] [INSPIRE].
U.A. Wiedemann, Gluon radiation off hard quarks in a nuclear environment: opacity expansion, Nucl. Phys. B 588 (2000) 303 [hep-ph/0005129] [INSPIRE].
C.A. Salgado and U.A. Wiedemann, Medium modification of jet shapes and jet multiplicities, Phys. Rev. Lett. 93 (2004) 042301 [hep-ph/0310079] [INSPIRE].
R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, On the angular dependence of the radiative gluon spectrum, Phys. Rev. C 64 (2001) 057902 [hep-ph/0105062] [INSPIRE].
R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].
R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and p T broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].
Landau Institute for Theoretical Physics, Moscow collaboration, B. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].
LPTHE, Univ. de Paris-Sud, Orsay and Landau Institute for Theoretical Physics, Moscow collaborations, B. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].
M. Gyulassy, P. Levai and I. Vitev, Non-Abelian energy loss at finite opacity, Phys. Rev. Lett. 85 (2000) 5535 [nucl-th/0005032] [INSPIRE].
M. Gyulassy and X.-n. Wang, Multiple collisions and induced gluon Bremsstrahlung in QCD, Nucl. Phys. B 420 (1994) 583 [nucl-th/9306003] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1110.4343
Rights and permissions
About this article
Cite this article
Armesto, N., Ma, H., Mehtar-Tani, Y. et al. Coherence effects and broadening in medium-induced QCD radiation off a massive \( q\bar{q} \) antenna. J. High Energ. Phys. 2012, 109 (2012). https://doi.org/10.1007/JHEP01(2012)109
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2012)109